A deep comprehension of the local anodic oxidation process in 2D materials is achieved thanks to an extensive experimental and theoretical study of this phenomenon in graphene. This requires to arrange a novel instrumental device capable to generate separated regions of monolayer graphene oxide (GO) over graphene, with any desired size, from micrometers to unprecedented mm , in minutes, a milestone in GO monolayer production. GO regions are manufactured by overlapping lots of individual oxide spots of thousands µm area. The high reproducibility and circular size of the spots allows not only an exhaustive experimental characterization inside, but also establishing an original model for oxide expansion which, from classical first principles, overcomes the traditional paradigm of the water bridge, and is applicable to any 2D-material. This tool predicts the oxidation behavior with voltage and exposure time, as well as the expected electrical current along the process. The hitherto unreported transient current is measured during oxidation, gaining insight on its components, electrochemical and transport. Just combining electrical measurements and optical imaging estimating carrier mobility and degree of oxidation is possible. X-ray photoelectron spectroscopy reveals a graphene oxidation about 30%, somewhat lower to that obtained by Hummers' method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201902817 | DOI Listing |
Small Methods
January 2025
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Economics, Shandong University of Technology, Zibo, 255000, PR China.
In recent years, the government has promoted the increased deployment of automated external defibrillators (AEDs) in public places with dense crowds, which is of great significance for ensuring that residents enjoy equal health rights. However, it is still unclear what factors decision-makers take into account when formulating deployment plans and whether these factors are related to local characteristics such as population distribution and socioeconomic conditions. Taking Shanghai, China as the research area, we adopted the kernel density estimation and spatial autocorrelation analysis to explore the spatial distribution characteristics of AEDs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.
Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.
View Article and Find Full Text PDFCortex
December 2024
Department of Psychological Sciences, University of Liverpool, Liverpool, UK.
The human visual system is tuned to symmetry, and the neural response to visual symmetry has been well studied. One line of research measures an Event Related Potential (ERP) component called the Sustained Posterior Negativity (SPN). Amplitude is more negative at posterior electrodes when participants see symmetrical patterns compared to asymmetrical patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!