Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia. A mechanism that might underlie opioid-induced hyperalgesia is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal long-term potentiation [LTP]"). Here, we show that both the induction as well as the maintenance of opioid-withdrawal LTP were abolished by pharmacological blockade of spinal glial cells. By contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal LTP. D-serine is the dominant coagonist for neuronal NMDA receptors, which are required for the amplification of synaptic strength on remifentanil withdrawal. Unexpectedly, opioid-withdrawal LTP was transferable through the cerebrospinal fluid between animals. This suggests that glial-cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial cell-independent LTP in the spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000001688DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
12
opioid-withdrawal ltp
12
memory trace
8
opioid-induced hyperalgesia
8
amplification synaptic
8
synaptic strength
8
pharmacological blockade
8
glial cells
8
ltp d-serine
8
ltp
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!