Volatile organic compounds (VOCs) are organic chemicals having a high vapor pressure at room temperature. Chronic exposure to VOC vapor can be potentially dangerous to human health. In this study, we build a high-performance freestanding aligned Ag/CdSe-CdS/poly(methyl methacrylate) (PMMA) texture to detect VOC vapors. The insight of this new VOC-sensing material is based on electrospinning techniques, ultraviolet (UV)/ozone treatments, and nano-optics. The incorporation of CdSe-CdS core-shell quantum rods (QR) and silver nanocrystals in the PMMA nanofibers amplifies the polarization response of long rods in VOC detection, thus increasing the sensitivity of VOC-sensing materials. Further, the uniaxial aligned Ag/QR/PMMA sensing material was treated by UV-ozone etching to increase surface absorption. The advanced double-sided UV-ozone etching on the uniaxial aligned Ag/QR/PMMA efficiently enhanced the extinction changes of VOCs. Two categories of solvents, typical VOCs and alcoholic VOCs, were put into practical tests for the Ag/QR/PMMA VOC-sensing materials. The Ag/QR/PMMA reached the detection limit for 100 ppm butanol within 1 min. The freestanding aligned Ag/CdSe-CdS/PMMA texture is a newly designed nanocomposite device for environmental risk monitoring. It can be accepted by the market compared to the other highly sensitive commercial VOC-sensing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b12333DOI Listing

Publication Analysis

Top Keywords

freestanding aligned
12
voc-sensing materials
12
volatile organic
8
organic compounds
8
aligned ag/cdse-cds/pmma
8
ag/cdse-cds/pmma texture
8
uniaxial aligned
8
aligned ag/qr/pmma
8
uv-ozone etching
8
aligned
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!