Extrinsically controlling the intrinsic activity and stability of two-dimensional (2D) semiconducting materials by substitutional doping is crucial for energy-related applications. However, an in situ transition-metal doping strategy for uniform and large-area chemical vapor deposited 2D semiconductors remains a formidable challenge. Here, we successfully synthesize highly uniform niobium-substituted tungsten disulfide (Nb-WS) monolayers, with a doping concentration of nearly 7% and sizes reaching 100 μm, through a metal dopant precursor route, using salt-catalyzed chemical vapor deposition (CVD). Our results reveal unusual effects in the structural, optical, electronic, and electrocatalysis characteristics of the Nb-WS monolayer. The Nb dopants readily induce a band restructuring effect, providing the most active site with a hydrogen adsorption energy of 0.175 eV and hence greatly improving its hydrogen evolution activity The combined advantages of the unusual physics and chemistry by in situ CVD doping technique open the possibility in designing 2D-material-based electronics and catalysts of novel functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b08232 | DOI Listing |
Nat Commun
January 2025
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
Transition-metal carbides have been advocated as the promising alternatives to noble-metal platinum-based catalysts in electrocatalytic hydrogen evolution reaction over half a century. However, the effectiveness of transition-metal carbides catalyzing hydrogen evolution in high-pH electrolyte is severely compromised due to the lowered proton activity and intractable alkaline-leaching issue of transition-metal centers. Herein, on the basis of validation of molybdenum-carbide model-catalyst system by taking advantage of surface science techniques, MoC micro-size spheres terminated by Al doped MoO layer exhibit a notable performance of alkaline hydrogen evolution with a near-zero onset-potential, a low overpotential (40 mV) at a typical current density of 10 mA/cm, and a small Tafel slope (45 mV/dec), as well as a long-term stability for continuous hydrogen production over 200 h.
View Article and Find Full Text PDFInorg Chem
January 2025
High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.
Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China. Electronic address:
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH production was lower.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
The elemental and isotopic abundances of major species in the Martian atmosphere have been determined, but analyses often lack sufficient precision, and those of minor and trace species are frequently not well known. Many important questions about the evolution and current state of Mars require the kind of knowledge that can be gained from analysis of a returned sample of the Martian atmosphere. Key target species include the noble gases, nitrogen, and various species containing carbon, hydrogen, and oxygen, such as methane.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!