Improvement of carotenoid bioaccessibility from spinach by co-ingesting with excipient nanoemulsions: impact of the oil phase composition.

Food Funct

Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China. and Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China.

Published: September 2019

Many of the carotenoids found naturally in fruits and vegetables are beneficial to human health, but they often have low oral bioavailability because of their high hydrophobicity. In this study, the effects of varying the composition of the oil phase of excipient nanoemulsions on carotenoid bioaccessibility from spinach were investigated using a simulated gastrointestinal tract. Nanoemulsions containing different ratios of medium chain triglycerides (MCT) and long chain triglycerides (LCT) were prepared: (i) mixing MCT and LCT oils before homogenization and (ii) mixing MCT droplets with LCT droplets after homogenization. The release of carotenoids from spinach and their solubilization within the mixed micelles formed after lipid digestion depended strongly on the oil phase composition. As expected, carotenoid bioaccessibility was always higher in the presence of excipient nanoemulsions than in their absence. The total free fatty acids released in the small intestine increased as the MCT/LCT ratio increased, which can be attributed to the faster release of shorter chain fatty acids from the oil droplet surfaces during lipid digestion. As the MCT ratio increased, lutein bioaccessibility increased but β-carotene bioaccessibility decreased. This difference was attributed to the ability of the formed mixed micelles to accommodate the two different kinds of carotenoids in their hydrophobic domains. Interestingly, carotenoid bioaccessibility was significantly lower (P < 0.05) when the oil droplets were mixed after homogenization than when the oils were mixed before homogenization. These results have important implications for the design of excipient foods to improve the bioavailability of hydrophobic nutraceuticals in fruits and vegetables.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo01328hDOI Listing

Publication Analysis

Top Keywords

carotenoid bioaccessibility
16
excipient nanoemulsions
12
oil phase
12
bioaccessibility spinach
8
phase composition
8
fruits vegetables
8
chain triglycerides
8
mixing mct
8
mixed micelles
8
lipid digestion
8

Similar Publications

β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.

View Article and Find Full Text PDF

This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively.

View Article and Find Full Text PDF

Regulation of whey protein emulsion gel's structure with pullulan to enhance astaxanthin bioaccessibility.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China. Electronic address:

In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.

View Article and Find Full Text PDF

The dose-response effect of lecithin on carotenoid bioaccessibility and Caco-2 cell uptake.

Food Chem

December 2024

Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, United States. Electronic address:

Previous results have been mixed as to whether the emulsifying agent lecithin increases carotenoid bioaccessibility and Caco-2 cellular uptake. The dose-response effect of lecithin (0-5 mg) on carotenoid bioaccessibility and Caco-2 cellular uptake was investigated in vitro using a mixture of β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. Resulting micelles were incubated with Caco-2 cells for 4 h.

View Article and Find Full Text PDF

Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!