Insights of CMNPs in water pollution control.

IET Nanobiotechnol

Department of Chemical Engineering, SSN College of Engineering, Chennai 603 110, India.

Published: August 2019

The various toxic contaminants such as dyes, heavy metals, pesticides, rare-earth elements, and hazardous chemicals are the major threats to all the flora and fauna. Owing to the harmful ill effects caused by the toxic contaminants, it is necessary to eliminate these compounds from the authors' ecosystem. The chitosan magnetic nanomaterials (CMNPs) are one of the superior materials used in the wastewater treatment through various conventional technologies. The chitosan is a natural source obtained from the crustacean shells of crabs, prawns etc. The magnetic nanomaterial prepared by the reinforcement of chitosan is highly effective in the removal of heavy metals, dyes, organic matter, and harmful chemicals. It is used in various technologies such as adsorption, flocculation, immobilisation, photocatalytic technology, and bioremediation. This possesses unique surface and magnetic characteristics, Moreover, it is simple, economically feasible, and eco-friendly material used efficiently in wastewater treatment. This review paper depicts the overview of CMNP in the industrial effluent treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675983PMC
http://dx.doi.org/10.1049/iet-nbt.2019.0030DOI Listing

Publication Analysis

Top Keywords

toxic contaminants
8
heavy metals
8
wastewater treatment
8
insights cmnps
4
cmnps water
4
water pollution
4
pollution control
4
control toxic
4
contaminants dyes
4
dyes heavy
4

Similar Publications

Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.

View Article and Find Full Text PDF

Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts.

ACS Sustain Resour Manag

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.

Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.

View Article and Find Full Text PDF

Phenyl arsine oxide (PAO) is a vesicant, similar to Lewisite, a potential chemical warfare agent and an environmental contaminant. PAO-induced skin burns can trigger acute organ injury, including lungs. We have recently demonstrated that PAO burns can also has a delayed toxicity, although the specific mechanism/s remain to be determined.

View Article and Find Full Text PDF

The complex synthetic approach and utilization of toxic chemicals restrain the commercialization of numerous existing superhydrophobic materials. This article focuses on the development of a halogen-free superhydrophobic material for self-cleaning applications. HMDS-modified MCM-41 is employed as the base material.

View Article and Find Full Text PDF

Chilli, a globally cultivated and consumed crop is significantly impacted by Thrips parvispinus. The reliance on pesticides could result in residue contamination, adversely affecting quality, leading to export rejections and health risks to consumers. This study evaluated the bioefficacy and persistent toxicity of fipronil and tolfenpyrad against thrips in chilli, and persistence of their residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!