Mechanically Induced Hydrophobic Recovery of Poly(dimethylsiloxane) (PDMS) for the Generation of Surfaces with Patterned Wettability.

ACS Appl Mater Interfaces

Department of Chemistry , University of Nebraska-Lincoln, 409C Hamilton Hall , P.O. Box 880304, Lincoln , Nebraska 68588 , United States.

Published: September 2019

Silicone elastomers are used in a variety of "stretchable" technologies (e.g., wearable electronics and soft robotics) that require the elastomeric components to accommodate varying magnitudes of mechanical stress during operation; however, there is limited understanding of how mechanical stress influences the surface chemistry of these elastomeric components despite the potential importance of this property with regards to overall function. In this study, plasma-oxidized silicone (poly(dimethylsiloxane)) films were systematically subjected to various amounts of tensile stress and the resulting surface chemical changes were monitored using contact angle measurements, X-ray photoelectron spectroscopy, and gas chromatography-mass spectrometry. Understanding the influence of mechanical stress on these materials made possible the development of a facile method for the rapid, on-demand switching of surface wettability and the generation of surface wettability patterns and gradients. The use of mechanical stress to control surface wettability is broadly applicable to the fields of microfluidics, soft robotics, printing, and to the design of adaptable materials and sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b10454DOI Listing

Publication Analysis

Top Keywords

mechanical stress
16
surface wettability
12
soft robotics
8
elastomeric components
8
stress
5
surface
5
mechanically induced
4
induced hydrophobic
4
hydrophobic recovery
4
recovery polydimethylsiloxane
4

Similar Publications

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Medial collateral ligament ganglion cyst: a rare cause of medial knee pain.

BMJ Case Rep

January 2025

Department of Trauma and Orthopaedics, Royal Free London NHS Foundation Trust, London, UK.

Ganglion cysts are commonly found in areas of constant mechanical stress such as the joints and tendons of the wrist or hand as well as the anterior aspect of the ankle. In the knee, parameniscal cysts are often encountered secondary to meniscal tears or articular degeneration. Intra-articular ganglion cysts are uncommon and often arise from the cruciate ligaments and are found in the intercondylar notch.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!