Optogenetics is an optical technique that exploits visible light for selective neuromodulation with spatio-temporal precision. Despite enormous effort, the effective stimulation of targeted neurons, which are located in deeper structures of the nervous system, by visible light, remains a technical challenge. Compared to visible light, near-infrared illumination offers a higher depth of tissue penetration owing to a lower degree of light attenuation. Herein, an overview of advances in developing new modalities for neural circuitry modulation utilizing upconversion-nanoparticle-mediated optogenetics is presented. These developments have led to minimally invasive optical stimulation and inhibition of neurons with substantially improved selectivity, sensitivity, and spatial resolution. The focus is to provide a comprehensive review of the mechanistic basis for evaluating upconversion parameters, which will be useful in designing, executing, and reporting optogenetic experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201803474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!