Purinergic signaling plays important roles in bone. P2X5, a member of ligand-gated ion channel receptors, has been demonstrated to regulate osteoclast maturation. However, the molecular mechanism of P2X5-mediated osteoclast regulation remains unclear. Here, we identified methylosome protein 50 (MEP50), a critical cofactor of the protein arginine methyltransferase 5 (PRMT5), as a P2X5-associating molecule. RNAi-mediated knockdown of MEP50 results in decreased formation of mature osteoclasts. MEP50 associates with P2X5, and this association requires the C-terminal intracellular region of P2X5. Additionally, impaired maturation of P2X5-deficient osteoclasts could be restored by transduction of full-length P2X5, but not a C-terminal deletion mutant of P2X5. These results indicate that P2X5 associates with MEP50 and suggest a link between the PRMT5 complex and P2X5 signaling in osteoclast maturation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957751 | PMC |
http://dx.doi.org/10.1002/1873-3468.13581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!