Cholesterol is a C27-sterol employed as starting material for the synthesis of valuable pharmaceutical steroids and precursors. The microbial transformations of cholesterol have been widely studied, since they are performed with high regio- and stereoselectivity and allow the production of steroidal compounds which are difficult to synthesize by classical chemical methods. In recent years, ongoing research is being conducted to discover novel biocatalysts and to develop biotechnological processes to improve existing biocatalysts and biotransformation reactions. The main objective of this review is to present the most remarkable advances in fungal and bacterial transformation of cholesterol, focusing on the different types of microbial reactions and biocatalysts, biotransformation products, and practical aspects related to sterol dispersion improvement, covering literature since 2000. It reviews the conversion of cholesterol by whole-cell biocatalysts and by purified enzymes that lead to various structural modifications, including side chain cleavage, hydroxylation, dehydrogenation/reduction, isomerization and esterification. Finally, approaches used to improve the poor solubility of cholesterol in aqueous media, such as the use of different sterol-solubilizing agents or two-phase conversion system, are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-019-2708-8 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:
In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.
View Article and Find Full Text PDFPharmaceutics
January 2025
Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany.
: Bempedoic acid (BA) is a novel cholesterol-lowering agent with proven positive effects on cardiovascular endpoints. Because it is an inhibitor of the hepatic transporters OATP1B1 and OATP1B3, two uptake transporters regulating the intrahepatic availability of statins, it increases the systemic exposure of co-administered statins. This interaction could raise the risk of myopathy.
View Article and Find Full Text PDFFood Funct
January 2025
School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China.
: Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality worldwide, with dietary interventions showing promise in reducing CVD risk factors. Phytosterols (PSs) in plant-based foods may reduce CVD risk by lowering low-density lipoprotein cholesterol. However, the relationship between dietary PS intake and CVD outcomes remains inconclusive.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Post-stroke early activation of neutrophils contributes to intensive neuroinflammation and worsens disease outcomes. Other pre-existing patient conditions can modify the extent of their activation during disease, especially hypercholesterolemia. However, whether and how increased circulating cholesterol amounts can change neutrophil activation responses very early after stroke has not been studied.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Objective: Previous observational studies suggest a potential link between gut microbiota, metabolites, and diabetic nephropathy. However, the exact causal relationship among these factors remains unclear.
Method: We conducted a two-sample bidirectional Mendelian randomization study using summary statistics from the IEU OpenGWAS Project database to investigate gut microbiota, metabolites, and diabetic nephropathy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!