Enhanced blebbing as a marker for metastatic prostate cancer.

Biomicrofluidics

Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.

Published: May 2019

Highly metastatic prostate cancer cells flowing through a microfluidic channel form plasma membrane blebs: they form 27% more than normal cells and have a lower stiffness (about 50%). Hypo-osmotic stress assays (with osmolarity) show 22% more blebbing of highly metastatic than moderately metastatic and 30% more than normal cells. Plasma membrane blebbing is known to provide important metastatic capabilities to cancer cells by aiding cell detachment from the primary tumor site and increasing cell deformability to promote cell migration through the extracellular matrix. Increased blebbing was attributed by others to decreased phosphorylated ezrin, radixin, and moesin (ERM) (p-ERM) protein expression-p-ERMs bind the plasma membrane to the actin cortex and reduced p-ERM expression can weaken membrane-cortex attachment. Myosin II also influences blebbing as myosin's natural contraction generates tension in the actin cortex. This increases cellular hydrostatic pressure, causes cortex rupture, cytoplasm flow out of the cortex, and hence blebbing. Highly metastatic cells are surprisingly found to express similar ezrin and myosin II levels but higher moesin levels in comparison with lowly metastatic or normal cells-suggesting that their levels, contrary to the literature [G. Charras and E. Paluch, Nat. Rev. Mol. Cell Biol. (9), 730-736 (2008); J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. (44), 18581-18586 (2009); M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. (36), 14434-14439 (2012); E. K. Paluch and E. Raz: Curr. Opin. Cell Biol. (5), 582-590 (2013)], are not important in metastatic prostate cell blebbing. Our results show that reduced F-actin is primarily responsible for increased blebbing in these metastatic cells. Blebbing can thus serve as a simple prognostic marker for the highly incident and lethal metastatic prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697032PMC
http://dx.doi.org/10.1063/1.5085346DOI Listing

Publication Analysis

Top Keywords

metastatic prostate
16
prostate cancer
12
highly metastatic
12
plasma membrane
12
metastatic
10
cancer cells
8
normal cells
8
blebbing
8
blebbing highly
8
increased blebbing
8

Similar Publications

Survival is poor for patients with metastatic cancer, and it is vital to examine new biomarkers that can improve patient prognostication and identify those who would benefit from more aggressive therapy. In metastatic prostate cancer, 2 new assays have become available: one that quantifies the number of cancer cells circulating in the peripheral blood, and the other a marker of the aggressiveness of the disease. It is critical to determine the magnitude of the effect of these biomarkers on the discrimination of a model-based risk score.

View Article and Find Full Text PDF

Importance: The open-label randomized phase 2 LACOG0415 trial evaluated 3 treatment strategies for patients with advanced castration-sensitive prostate cancer (CSPC): androgen deprivation therapy (ADT) plus abiraterone acetate and prednisone (AAP), apalutamide (APA) alone, or APA plus AAP.

Objective: To investigate the association of ADT plus AAP, APA alone, or APA plus AAP with health-related quality of life (HRQOL) in patients with advanced CSPC in the LACOG0415 trial.

Design, Setting, And Participants: The LACOG0415 randomized clinical trial comprised 128 patients with advanced CSPC who were randomized (1:1:1) to 1 of 3 treatment arms from October 16, 2017, to April 23, 2019.

View Article and Find Full Text PDF

Purpose: Lutetium-177 Prostate-specific membrane antigen (Lu-PSMA) radioligand therapy is EMA-approved for metastatic castration resistant prostate cancer (mCRPC) after androgen receptor pathway inhibition (ARPI) and taxan-based chemotherapy. However, its effect in taxan-naïve patients is under current investigation.

Methods: We relied on the FRAMCAP database to elaborate Lu-PSMA therapy outcomes of progression-free (PFS) and overall (OS) in taxan-naïve mCRPC patients after previous ARPI treatment.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!