In chronic infectious diseases caused by gram-negative bacteria, such as osteomyelitis, septic arthritis, and periodontitis, osteoclastic activity is enhanced with elevated inflammation, which disturbs the bone homeostasis and results in osteolysis. Lipopolysaccharide (LPS), as a bacteria product, plays an important role in this process. Recent evidence shows that an antimalarial drug artesunate attenuates LPS-induced osteolysis independent of RANKL. In this study we evaluated the effects of artesunate on LPS-induced osteoclastogenesis in vitro and femur osteolysis in vivo, and explored the mechanisms underlying the effects of artesunate on LPS-induced osteoclast differentiation independent of RANKL. In preosteoclastic RAW264.7 cells, we found that artesunate (1.56-12.5 μM) dose dependently inhibited LPS-induced osteoclast formation accompanied by suppressing LPS-stimulated osteoclast-related gene expression (Fra-2, TRAP, Cathepsin K, β3-integrin, DC-STAMP, and Atp6v0d2). We showed that artesunate (3.125-12.5 µM) inhibited LPS-stimulated nuclear factor of activated T cells c1 (NFATc1) but not NF-κB transcriptional activity; artesunate (6.25, 12.5 μM) significantly inhibited LPS-stimulated NFATc1 protein expression. Furthermore, artesunate treatment markedly suppressed LPS-induced Ca influx, and decreased the expression of PP2B-Aα (calcineurin) and pPLCγ1 in the cells. In addition, artesunate treatment significantly decreased the expression of upstream signals TLR4 and TRAF6 during LPS-induced osteoclastogenesis. Administration of artesunate (10 mg/kg, ip) for 8 days effectively inhibited serum TNF-α levels and ameliorated LPS (5 mg/kg, ip)-induced inflammatory bone loss in vivo. Taken together, artesunate attenuates LPS-induced inflammatory osteoclastogenesis by inhibiting the expression of TLR4/TRAF6 and the downstream PLCγ1-Ca-NFATc1 signaling pathway. Artesunate is a valuable choice to treat bone loss induced by gram-negative bacteria infection or inflammation in RANKL-independent pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468527 | PMC |
http://dx.doi.org/10.1038/s41401-019-0289-6 | DOI Listing |
Background: The WHO malaria treatment guidelines recommend a total dose in the range of 3·5 to 7·0 mg/kg of primaquine to eliminate ( ) hypnozoites and prevent relapses. There are however indications that for tropical isolates, notably from Southeast Asia, the lower dose of 3·5 mg/kg is insufficient. Determining the most effective regimen to eliminate hypnozoites is needed to achieve elimination of this malaria parasite.
View Article and Find Full Text PDFParasitol Int
January 2025
Infectious Diseases Division, Fundación Jiménez Díaz University Hospital, Madrid, Spain.
Immunopharmacol Immunotoxicol
January 2025
Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Objective: Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Internal Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey.
In patients presenting with post-malarial anemia following intravenous artesunate treatment, post-artesunate delayed hemolysis should be considered in the differential diagnosis, even in endemic settings. Close monitoring for signs of delayed hemolysis in patients previously treated with intravenous artesunate for severe malaria, regardless of their malaria exposure history or geographic location is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!