Our recent study has demonstrated that increased connectivity in the cerebello-thalamo-cortical (CTC) circuitry is a state-independent neural trait that can potentially predict the onset of psychosis. One possible cause of such "trait" abnormality would be genetic predisposition. Here, we tested this hypothesis using multi-paradigm functional magnetic resonance imaging (fMRI) data from two independent twin cohorts. In a sample of 85 monozygotic (MZ) and 52 dizygotic (DZ) healthy twin pairs acquired from the Human Connectome Project, we showed that the connectivity pattern of the identified CTC circuitry was more similar in the MZ twins (r = 0.54) compared with that in the DZ twins (r = 0.22). The structural equation modeling analysis revealed a heritability estimate of 0.52 for the CTC connectivity, suggesting a moderately strong genetic effect. Moreover, using an independent schizophrenia cotwin sample (10 discordant MZ cotwins, 30 discordant DZ cotwins, and 32 control cotwins), we observed a significant linear relationship between genetic distance to schizophrenia and the connectivity strength in the CTC circuitry (i.e., schizophrenia MZ cotwins > schizophrenia DZ cotwins > control twins, P = 0.045). The present data provide converging evidence that increased connectivity in the CTC circuitry is likely to be a heritable trait that is associated with the genetic risk of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702223PMC
http://dx.doi.org/10.1038/s41398-019-0531-5DOI Listing

Publication Analysis

Top Keywords

ctc circuitry
16
heritable trait
8
increased connectivity
8
discordant cotwins
8
schizophrenia
5
connectivity
5
ctc
5
evidence cerebello-thalamo-cortical
4
cerebello-thalamo-cortical hyperconnectivity
4
hyperconnectivity heritable
4

Similar Publications

A multi-network model of Parkinson's disease tremor: exploring the finger-dimmer-switch theory and role of dopamine in thalamic self-inhibition.

J Neural Eng

October 2024

Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany.

. Tremor is a cardinal symptom of Parkinson's disease (PD) that manifests itself through complex oscillatory activity across multiple neuronal populations. According to the finger-dimmer-switch (FDS) theory, tremor is triggered by transient pathological activity in the basal ganglia-thalamo-cortical (BTC) network (the finger) and transitions into an oscillatory form within the inner circuitry of the thalamus (the switch).

View Article and Find Full Text PDF

Understanding aberrant functional changes between brain regions has shown promise for characterizing and differentiating the symptoms associated with progressive psychiatric disorders. The functional integration between the thalamus and cerebellum significantly influences learning and memory in cognition. Observed in schizophrenic patients, dysfunction within the corticalthalamocerebellar (CTC) circuitry is linked to challenges in prioritizing, processing, coordinating, and responding to information.

View Article and Find Full Text PDF

Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells.

Adv Healthc Mater

December 2023

Finnish Cancer Institute and FICAN South, Helsinki University Hospital & Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, 00014, Finland.

The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant.

View Article and Find Full Text PDF

Our previous work using 3T functional Magnetic Resonance Imaging (fMRI) parcellated the human dentate nuclei (DN), the primary output of the cerebellum, to three distinct functional zones each contributing uniquely to default-mode, salience-motor, and visual brain networks. In this perspective piece, we highlight the possibility to target specific functional territories within the cerebellum using non-invasive brain stimulation, potentially leading to the refinement of cerebellar-based therapeutics for precision psychiatry. Significant knowledge gap exists in our functional understanding of cerebellar systems.

View Article and Find Full Text PDF

The Impact of Glutamatergic Synapse Dysfunction in the Corticothalamocortical Network on Absence Seizure Generation.

Front Mol Neurosci

February 2022

Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.

Childhood absence epilepsy (CAE) is the most common pediatric epilepsy affecting 10-18% of all children with epilepsy. It is genetic in origin and the result of dysfunction within the corticothalamocortical (CTC) circuitry. Network dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds and thus account for the variability in patient response to currently available anti-epileptic drugs; 30% of children with absence seizures are pharmaco-resistant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!