Many fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus , LPMO9A (NCU02240), LPMO9C (NCU02916), and LPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound LPMO9A at 1.6-Å resolution and found that LPMO9A and LPMO9C, containing a CBM1 carbohydrate-binding module, bind cellulose more strongly and were less susceptible to inactivation than LPMO9D, which lacks a CBM. All three LPMOs were active on tamarind xyloglucan and konjac glucomannan, generating similar products but clearly differing in activity levels. Importantly, in some cases, the addition of phosphoric acid-swollen cellulose (PASC) had a major effect on activity: LPMO9A was active on xyloglucan only in the presence of PASC, and PASC enhanced LPMO9D activity on glucomannan. Interestingly, the three enzymes also exhibited large differences in their interactions with enzymatic electron donors, which could reflect that they are optimized to act with different reducing partners. All three enzymes efficiently used HO as a cosubstrate, yielding product profiles identical to those obtained in O-driven reactions with PASC, xyloglucan, or glucomannan. Our results indicate that seemingly similar LPMOs act preferentially on different types of copolymeric substructures in the plant cell wall, possibly because these LPMOs are functionally adapted to distinct niches differing in the types of available reductants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791328PMC
http://dx.doi.org/10.1074/jbc.RA119.008196DOI Listing

Publication Analysis

Top Keywords

lytic polysaccharide
8
polysaccharide monooxygenases
8
three enzymes
8
lpmos
5
comparison three
4
three seemingly
4
seemingly lytic
4
monooxygenases suggests
4
suggests roles
4
roles plant
4

Similar Publications

Chitosan nano-formulation enhances stability and bactericidal activity of the lytic phage HK6.

BMC Biotechnol

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.

Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.

Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.

View Article and Find Full Text PDF

Aims: In this study, we report the use of two novel lytic polyvalent phages as a cocktail in in planta assays and their efficacy in the control of bacterial halo blight (BHB) caused by Pseudomonas coronafaciens pv. garcae (Pcg) in coffee plants.

Methods And Results: Phages were isolated from samples of coffee plant leaves collected at two different locations in Brazil.

View Article and Find Full Text PDF

New-Generation Antibacterial Agent-Cellulose-Binding Thermostable TP84_Endolysin.

Int J Mol Sci

December 2024

Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.

The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry.

View Article and Find Full Text PDF

The Effect of CBM1 and Linker on the Oxidase, Peroxidase and Monooxygenase Activities of AA9 LPMOs: Insight into Their Correlation with the Nature of Reductants and Crystallinity of Celluloses.

Int J Mol Sci

November 2024

The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs.

View Article and Find Full Text PDF

Therapeutic and Diagnostic Potential of a Novel K1 Capsule Dependent Phage, JSSK01, and Its Depolymerase in Multidrug-Resistant Infections.

Int J Mol Sci

November 2024

Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Road, Hualien 97004, Taiwan.

Bacteriophages are viruses that have the potential to combat bacterial infections caused by antimicrobial-resistant bacterial strains. In this study, we investigated a novel lytic bacteriophage, vB_EcoS_JSSK01, isolated from sewage in Hualien, Taiwan, which effectively combats multidrug-resistant (MDR) of the K1 capsular type. K1 is a major cause of severe extraintestinal infections, such as neonatal meningitis and urinary tract infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!