CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the CTPS ortholog Cts1) also in Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779450 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.009913 | DOI Listing |
Blood
December 2024
Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: TREM2 signaling has been implicated in Alzheimer's Disease (AD). TREM2 regulates microglial states and functions such as phagocytosis. The most prominent TREM signaling adapter is DAP12, encoded by TYROBP.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK.
View Article and Find Full Text PDFInsects
December 2024
Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15431 Athens, Greece.
Toll receptors play important roles in the development and innate immunity of insects. Previously, we reported the immunological function of in silkworm, , larvae. In this study, we focused on the role of as a regulator in the Toll signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!