Background And Purpose: Integrated analysis of existing radiosensitivity data obtained by the gold-standard clonogenic assay has the potential to improve our understanding of cancer cell radioresistance. However, extraction of radiosensitivity data from the literature is highly labor-intensive. To aid in this task, using deep convolutional neural networks (CNNs) and other computer technologies, we developed an analysis pipeline that extracts radiosensitivity data derived from clonogenic assays from the literature.
Materials And Methods: Three classifiers (C1-3) were developed to identify publications containing radiosensitivity data derived from clonogenic assays. C1 uses Faster Regions CNN with Inception Resnet v2 (fRCNN-IRv2), VGG-16, and Optical Character Recognition (OCR) to identify publications that contain semi-logarithmic graphs showing radiosensitivity data derived from clonogenic assays. C2 uses fRCNN-IRv2 and OCR to identify publications that contain bar graphs showing radiosensitivity data derived from clonogenic assays. C3 is a program that identifies publications containing keywords related to radiosensitivity data derived from clonogenic assays. A program (iSF) was developed using Mask RCNN and OCR to extract surviving fraction after 2-Gy irradiation (SF) as assessed by clonogenic assays, presented in semi-logarithmic graphs. The efficacy of C1-3 and iSF was tested using seven datasets (1805 and 222 publications in total, respectively).
Results: C1-3 yielded sensitivity of 91.2% ± 3.4% and specificity of 90.7% ± 3.6%. iSF returned SF values that were within 2.9% ± 2.6% of the SF values determined by radiation oncologists.
Conclusion: Our analysis pipeline is potentially useful to acquire radiosensitivity data derived from clonogenic assays from the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2019.07.003 | DOI Listing |
Int J Radiat Biol
January 2025
Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.
Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.
Cancer Chemother Pharmacol
January 2025
Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
Purpose: Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC.
Methods: In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects.
Br J Radiol
January 2025
Radiotherapy Physics Dept, Ipswich Hospital, Ipswich, Suffolk, IP45PD, UK.
Objectives: To survey kilovoltage (kV) radiotherapy in the UK, updating a 2016 study, focussing on radiotherapy physics, including equipment quality control (QC) and radiation dosimetry, with information on installed equipment and clinical activity.
Methods: All UK radiotherapy physics departments (n = 68) were invited to complete a comprehensive survey. An analysis of the installed equipment base, patient numbers, clinical activity, QC testing and radiation dosimetry processes were undertaken.
Cureus
December 2024
Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, USA.
Purpose Low-dose total skin electron beam therapy (LD-TSEBT) has recently gained popularity in treating mycosis fungoides (MF) due to its reduced toxicity and favorable response rates. Combining accelerated LD-TSEBT with the modified Stanford technique (mST), a condensed cycling approach, offers a promising and convenient option. However, in vivo dosimetry data confirming the effectiveness of this approach is limited.
View Article and Find Full Text PDFGut
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!