Sesame is a nutritional agricultural product with medicinal properties. Accurate determination of micronutrients is important for the improvement of sesame quality and nutrition assessments. Our previous study showed that 10 antioxidants-d-homoproline, vitamin B, coniferyl aldehyde, hesperidin, phloretin, N-acetyl-l-leucine, l-hyoscyamine, ferulic acid, 5-methoxypsoralen, and 8-methoxypsoralen-in sesame were potential characteristic nutrients in sesame. Herein, simultaneous detection of 10 different types of antioxidants was developed by using ultrasound-assisted extraction coupled with liquid chromatography-tandem mass spectrometry (UAE-LC-MS/MS) with the help of response surface methodology. The significant variables and levels were screened and optimized by combining the single factor experiment, Plackett-Burman test, and Box-Behnken design. The optimal conditions for extraction of target antioxidants in sesame were methanol solution of 75.0%, liquid-to-material ratio of 20:1 (mL/g), extraction temperature of 50 °C, extraction power of 410.0 W, extraction time of 65 min. The total yield of targets was 21.74 μg/g under the optimized conditions. The mobile phase used was 0.1% formic acid in acetonitrile and 0.1% formic acid in water, and the column was a Thermo Syncronis C18 reverse phase column (100 mm × 2.1 mm, 3 μm). All targets required only one injection and could be quickly separated and assayed within 7 min. The limits of detection and limits of quantification for these 10 nutritional compounds ranged from 0.01 to 0.11 µg/kg and from 0.04 to 0.34 µg/kg, respectively. The validation results indicated that the method had reasonable linearity ( ≥ 0.9990), good recoveries (71.1%-118.3%), satisfactory intra-day precision (≤9.6%) and inter-day precision (≤12.9%), and negligible matrix effects (≤13.8%). This simultaneous quantification method was accurate, fast, and robust for the assessment of sesame nutrition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720519 | PMC |
http://dx.doi.org/10.3390/antiox8080321 | DOI Listing |
Ultrason Sonochem
January 2025
School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China. Electronic address:
Polysaccharides from the dried tuber of Typhonium giganteum Engl. (TGEPs) were obtained by utilizing ultrasonic-assisted extraction (UAE) as the extraction method. The determination of optimal process parameters for the UAE of TGEPs (TGEP-U) was accomplished through the application of response surface methodology (RSM).
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.
(ASC) contains a variety of bioactive compounds and serves as an important traditional Chinese medicinal resource. However, its prolonged growth cycle and reliance on wild populations limit its practical use. To explore the potential of (ASF) as an alternative, this study focused on optimizing the extraction process and assessing the bioactivity of stem extracts.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland.
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).
View Article and Find Full Text PDFMolecules
January 2025
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO-HF with a ratio of 2:1, rock powder samples of 50 mg were completely decomposed in 12 h at 140 °C after 4 h of ultrasonic treatment with or without pressure relief procedure.
View Article and Find Full Text PDFMolecules
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy.
L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of have been widely utilized in traditional medicine, underscoring its important role in local healing practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!