Our previous study demonstrated that administration of NVP-BEZ235 (BEZ235), a dual PI3K/mTOR inhibitor, before radiotherapy (RT) enhanced the radiotherapeutic effect in colorectal cancer (CRC) cells both in vitro and in vivo. Here, we evaluated whether maintenance BEZ235 treatment, after combinatorial BEZ235 + RT therapy, prolonged the antitumor effect in CRC. K-RAS mutant CRC cells (HCT116 and SW480), wild-type CRC cells (HT29), and HCT116 xenograft tumors were separated into the following six study groups: (1) untreated (control); (2) RT alone; (3) BEZ235 alone; (4) RT + BEZ235; (5) maintenance BEZ235 following RT + BEZ235 (RT + BEZ235 + mBEZ235); and (6) maintenance BEZ235 following BEZ235 (BEZ235 + mBEZ235). RT + BEZ235 + mBEZ235 treatment significantly inhibited cell viability and increased apoptosis in three CRC cell lines compared to the other five treatments in vitro. In the HCT116 xenograft tumor model, RT + BEZ235 + mBEZ235 treatment significantly reduced the tumor size when compared to the other five treatments. Furthermore, the expression of mTOR signaling molecules (p-rpS6 and p-eIF4E), DNA double-strand break (DSB) repair-related molecules (p-ATM and p-DNA-PKcs), and angiogenesis-related molecules (VEGF-A and HIF-1α) was significantly downregulated after RT + BEZ235 + mBEZ235 treatment both in vitro and in vivo when compared to the RT + BEZ235, RT, BEZ235, BEZ235 + mBEZ235, and control treatments. Cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), 53BP1, and γ-H2AX expression in the HCT116 xenograft tissue and three CRC cell lines were significantly upregulated after RT + BEZ235 + mBEZ235 treatment. Maintenance BEZ235 treatment in CRC cells prolonged the inhibition of cell viability, enhancement of apoptosis, attenuation of mTOR signaling, impairment of the DNA-DSB repair mechanism, and downregulation of angiogenesis that occurred due to concurrent BEZ235 and RT treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721476PMC
http://dx.doi.org/10.3390/cancers11081204DOI Listing

Publication Analysis

Top Keywords

bez235 bez235
28
bez235 mbez235
28
bez235
21
maintenance bez235
20
bez235 treatment
16
crc cells
16
mbez235 treatment
16
hct116 xenograft
12
treatment
8
colorectal cancer
8

Similar Publications

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.

View Article and Find Full Text PDF

Background: Stomach adenocarcinoma (STAD) is the fifth most common tumor worldwide, imposing a significant disease burden on populations, particularly in Asia. Oxidative stress is well-known to play an essential role in the occurrence and progression of malignancies. Our study aimed to construct a prediction model by exploring the correlation between oxidative stress-related genes and the prognosis of patients with STAD.

View Article and Find Full Text PDF

Background: Approximately 30% of the non-small cell lung cancer (NSCLC) patients which harbor no recognizable oncogenic driver mutation are not eligible for targeted therapy. Functional drug screening of tumor cells helps to identify susceptible drug targets not recognized by gene panels for targeted mutation analysis. The aim of this study is to characterize the BH1406 cell line carrying an activating SOS1 mutation and to check its sensitivity to cognate inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • IDH2 mutations play a crucial role in developing resistance to cytarabine in acute myeloid leukemia, with both knockdown and overexpression studies needed to understand their impact on cellular behavior.
  • Experiments using glycolytic inhibitors and various assays revealed that overexpression of IDH2 enhances cell proliferation and glycolysis while inhibiting apoptosis, contributing to treatment resistance.
  • Transcriptome analysis highlighted the PI3K/Akt signaling pathway's involvement, with the compound BEZ235 effectively reducing glycolytic metabolism and Ara-C resistance in IDH-mutant AML models.
View Article and Find Full Text PDF

Oocyte death is triggered by the stabilization of TAp63α dimers in response to cisplatin.

Cell Death Dis

November 2024

Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.

The TAp63α protein is highly expressed in primordial follicle oocytes, where it typically exists in an inactive dimeric form. Upon DNA damage, TAp63α undergoes hyperphosphorylation, transitioning from a dimeric to a tetrameric structure, which initiates oocyte apoptosis by upregulating pro-apoptotic gene. Our results demonstrate that cisplatin, an alkylating anti-cancer agent, predominantly produced the TAp63α dimer rather than the tetramer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!