Novel S-Bend Resonator Based on a Multi-Mode Waveguide with Mode Discrimination for a Refractive Index Sensor.

Sensors (Basel)

Department of Electrical and Electronics Engineering, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-ku, Seoul 156-756, Korea.

Published: August 2019

In this paper, a multi-mode waveguide-based optical resonator is proposed for an integrated optical refractive index sensor. Conventional optical resonators have been studied for single-mode waveguide-based resonators to enhance the performance, but mass production is limited owing to the high fabrication costs of nano-scale structures. To overcome this problem, we designed an S-bend resonator based on a micro-scale multi-mode waveguide. In general, multi-mode waveguides cannot be utilized as optical resonators, because of a performance degradation resulting from modal dispersion and an output transmission with multi-peaks. Therefore, we exploited the mode discrimination phenomenon using the bending loss, and the resulting S-bend resonator yielded an output transmission without multi-peaks. This phenomenon is utilized to remove higher-order modes efficiently using the difference in the effective refractive index between the higher-order and fundamental modes. As a result, the resonator achieved a Q-factor and sensitivity of 2.3 × 10 and 52 nm/RIU, respectively, using the variational finite-difference time-domain method. These results show that the multi-mode waveguide-based S-bend resonator with a wide line width can be utilized as a refractive index sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720186PMC
http://dx.doi.org/10.3390/s19163600DOI Listing

Publication Analysis

Top Keywords

s-bend resonator
16
refractive sensor
12
resonator based
8
multi-mode waveguide
8
mode discrimination
8
multi-mode waveguide-based
8
optical resonators
8
output transmission
8
transmission multi-peaks
8
resonator
6

Similar Publications

We report an anti-resonant hollow core fibre with ultraviolet transmission down to 190 nm, covering the entire UV-A, UV-B and much of the UV-C band. Guidance from 190 - 400 nm is achieved apart for a narrow high loss resonance band at 245 - 265 nm. The minimum attenuation is 0.

View Article and Find Full Text PDF

Residues spanning distinct regions of the low-complexity domain of the RNA-binding protein, Fused in Sarcoma (FUS-LC), form fibril structures with different core morphologies. Solid-state NMR experiments show that the 214-residue FUS-LC forms a fibril with an S-bend (core-1, residues 39-95), while the rest of the protein is disordered. In contrast, the fibrils of the C-terminal variant (FUS-LC-C; residues 111-214) have a U-bend topology (core-2, residues 112-150).

View Article and Find Full Text PDF

We report on thulium-doped waveguide amplifiers integrated on a low-loss silicon nitride platform. The amplifier structure consists of a thulium-doped tellurium oxide thin film coated on a silicon nitride strip waveguide on silicon. We determine a waveguide background loss of 0.

View Article and Find Full Text PDF

Novel S-Bend Resonator Based on a Multi-Mode Waveguide with Mode Discrimination for a Refractive Index Sensor.

Sensors (Basel)

August 2019

Department of Electrical and Electronics Engineering, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-ku, Seoul 156-756, Korea.

In this paper, a multi-mode waveguide-based optical resonator is proposed for an integrated optical refractive index sensor. Conventional optical resonators have been studied for single-mode waveguide-based resonators to enhance the performance, but mass production is limited owing to the high fabrication costs of nano-scale structures. To overcome this problem, we designed an S-bend resonator based on a micro-scale multi-mode waveguide.

View Article and Find Full Text PDF

The synergetic use of gain and loss in parity-time symmetric coupled resonators has been shown to lead to single-mode lasing operation. However, at the corresponding resonance frequency, an ideal ring resonator tends to support two degenerate eigenmodes, traveling along the cavity in opposite directions. Here, we show a unidirectional single-moded parity-time symmetric laser by incorporating active S-bend structures with opposite chirality in the respective ring resonators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!