This paper presents development and performance assessment of an innovative and a highly potent graphene-electrolyte capacitive sensor (GECS) based on the supercapacitor model. Although graphene has been widely researched and adapted in supercapacitors as electrode material, this combination has not been applied in sensor technology. A low base capacitance, generally the impeding factor in capacitive sensors, is addressed by incorporating electric double layer capacitance in GECS, and a million-fold increase in base capacitance is achieved. The high base capacitance (∼22.0 μF) promises to solve many inherent issues pertaining to capacitive sensors. GECS is fabricated by using thermally reduced microwave exfoliated graphene oxide material to form interdigitated electrodes coated with solid-state electrolyte which forms the double layer capacitance. The capacitance response of GECS on subjecting to strain is examined and an enormous operating range (∼300 nF) is seen, which is the salient feature of this sensor. The GECS showed an impressive device sensitivity of 11.24 nF kPa-1 and good immunity towards noise i.e. lead capacitance and stray capacitance. Two regimes of operation are identified based on the procedure of device fabrication. The device can be applied to varied applications and one such biomedical application of breath pattern monitoring is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab3cd2DOI Listing

Publication Analysis

Top Keywords

base capacitance
12
graphene-electrolyte capacitive
8
sensor gecs
8
capacitance
8
capacitive sensors
8
double layer
8
layer capacitance
8
gecs
5
high-range noise
4
noise immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!