We performed ab initio calculations to study the structural and optoelectronic properties of simple and slab phase TaNO using density functional theory (DFT), in which the full potential augmented plane wave (FP-LAPW) method was implemented using the computational code Wien 2k. The modified Becke-Johnson potential (mBJ-GGA) was used for these calculations. The calculated band structure and electronic properties revealed an indirect bandgap for simple TaNO (3.2 eV) and a direct bandgap for slab TaNO (1.5 eV). The interband electronic transitions were investigated from the band structure, and transition peaks were observed from the imaginary part of the dielectric function. These transitions are due to Ta-p, N-p and O-p orbitals for simple TaNO and Ta-p, N-s as well as O-p orbitals for slab TaNO. The plasmon energy was related to the main peak of the energy loss function, which was approximately 10 eV. The static value of the dielectric constant and the refraction were close to the experimental values. In general, slab TaNO shows different properties and is more suitable for optoelectronic applications due to direct bandgap.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2019.08.006DOI Listing

Publication Analysis

Top Keywords

slab tano
12
band structure
8
simple tano
8
direct bandgap
8
o-p orbitals
8
tano
7
electronic structure
4
structure optical
4
properties
4
optical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!