Mine tailings represent a serious environmental pollution problem and techniques such as phytoremediation using plant growth-promoting bacteria become an important solution due to their environmentally friendly nature. The study performed using Brassica juncea L. (Indian mustard) and plant growth-promoting bacteria such as Serratia K120, Enterobacter K125, Serratia MC107, Serratia MC119 and Enterobacter MC156 showed that plant roots colonization favored the transfer of metals to the plant, mainly Al and Pb from the 8 analyzed metals with bioaccumulation factors >1 for Al, Pb, Cd and Fe obtained with Serratia K120, Enterobacter K125, Serratia MC107, Serratia MC119 and Enterobacter MC156. Based on these results, this system could be used in phytoextraction processes whereas Enterobacter MC156 reduced the bioaccumulation of metals, indicating the possible phytostabilization of metals present in mine tailings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2019.126308DOI Listing

Publication Analysis

Top Keywords

mine tailings
12
plant growth-promoting
12
growth-promoting bacteria
12
enterobacter mc156
12
brassica juncea
8
serratia k120
8
k120 enterobacter
8
enterobacter k125
8
k125 serratia
8
serratia mc107
8

Similar Publications

Copper mining drives economic growth, with the global demand expected to reach 120 million metric tons annually by 2050. However, mining produces tailings containing heavy metals (HMs), which poses environmental risks. This study investigated the efficacy of phytoremediation (Phy) combined with electrokinetic treatment (EKT) to increase metal uptake in grown in tailings from the Metropolitan Region of Chile.

View Article and Find Full Text PDF

Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.

View Article and Find Full Text PDF

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Prevalence of antibiotic resistance genes in mining-impacted farmland environments.

Ecotoxicol Environ Saf

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:

Mining activities produce large quantities of tailings and acid mine drainage, which contain varieties of heavy metals, thereby affecting the downstream farmland soils and crops. Heavy metals could induce antibiotic resistance through co-selection pressure. However, the profiles of antibiotic resistance genes (ARGs) in the mining-affected farmland soils and crops are still unclear.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!