A major challenge of uranium extraction from seawater (UES) is to effectively block the biofouling without destroying the ecological balance, especially prevent the attachment of macroalgae on the surface of the adsorbent. Herein, a robust montmorillonite-polydopamine/polyacrylamide nanocomposite hydrogel is reported by a two-step method, including PDA intercalation MMT and further free radical polymerization with AM monomers. The interpenetrating structure of hydrogel lead to high water permeability with the swelling ratio of 51, which could fully facilitate the internal accessible sites exposure and increase the uranium diffusion. As a result, a high adsorption capacity of 44 mg g was achieved in lab-scale dynamic adsorption. Most importantly, the prepared anti-biofouling hydrogel adsorbents display excellent anti-adhesion ability towards Nitzschia after 8 days contact. The adsorption capacity of uranium can reach 2130 μg g in algae-contained simulated seawater. This hydrogel also exhibited a long service life of acceptable mechanical strength and adsorption capacity after at least 6 adsorption-desorption cycles. This new anti-biofouling nanocomposite hydrogel shows great potential as a new generation adsorbent for UES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.120984 | DOI Listing |
Biopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Engineering, University of Palermo, Palermo, Italy.
Chitosan is gaining scientific recognition as a hydrogel in bone tissue engineering (BTE) due to its ability to support osteoblast attachment and proliferation. However, its low mechanical strength and lack of structural integrity limit its application. Nanometric hydroxyapatite (HA) is used as a filler to enhance the mechanical properties and osteoinductivity of hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!