Recently, liposomes have been explored as a potential solution to improve the biocompatibility and the colloidal stability of magnetic nanoparticles. Protocols have been developed for producing magnetoliposomes of magnetite nanoparticles obtained inorganically (MNPs). However, the biomimetic synthesis of magnetite using heterologous proteins from magnetotactic bacteria has become a real alternative to produce novel biomimetic magnetic nanoparticles (BMNPs). Among these, the BMNPs obtained in presence of MamC protein from Magnetococcus marinus MC-1 have been proposed as excellent candidates to be potentially used as drug nanocarriers and as hyperthermia agents. However, their colloidal stability still needs to be improved while maintaining their magnetic properties intact. One possibility explored in this manuscript is to form magnetoliposomes that contain BMNPs. Indeed, the protocols developed for producing magnetoliposomes of MNPs need to be tested and modified to be able to include BMNPs. In this context, a protocol has been developed to produce both magnetoliposomes filled with MNPs and/or BMNPs and their potential as hyperthermia agents was tested. In fact, for the first time, these two types of nanoparticles were mixed in different proportions to test the composition that would optimize such as behaviour as hyperthermia agents. Interestingly, it was observed that the hyperthermia behaviour of the magnetoliposomes greatly improved if they were filled with a mixture of MNPs and BMNPs. These results indicate that these magnetoliposomes display optimal characteristics to become a potential agent for hyperthermia and that the opening of those liposomes could be externally controlled by applying an alternate magnetic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110435 | DOI Listing |
Int J Nanomedicine
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation.
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.
View Article and Find Full Text PDFDis Mon
January 2025
NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA.
3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain.
Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!