Sorbitol concentration has been measured in retina, optic, and sural nerve of normal, diabetic, and aldose reductase inhibitor-treated diabetic rats. The sural nerve displayed significantly higher sorbitol content than the retina and the optic nerve both in control animals and in diabetic animals. In the sural nerve the response to treatment with an aldose reductase inhibitor was more marked than in the two other tissues. The activities of aldose reductase and sorbitol dehydrogenase were not influenced by diabetes. It is suggested that aldose reductase inhibition may be of greater use for alleviating peripheral nervous system accumulation of sorbitol than for hindering CNS accumulation of the polyol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0026-0495(88)90191-6 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Chemistry, Faculty of Science, Taibah University, Madinah 42353, Saudi Arabia.
Type 2 diabetes has become a significant global health challenge. Numerous drugs have been developed to treat the condition, either as standalone therapies or in combination when glycemic control cannot be achieved with a single medication. As existing treatments often come with limitations, there is an increasing focus on creating novel therapeutic agents that offer greater efficacy and fewer side effects to better address this widespread issue.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Biosciences, Integral University, Lucknow, India.
Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
Nat Plants
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.
View Article and Find Full Text PDFSci Rep
January 2025
Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!