With an exclusive aim to looking into a mechanism of membrane electroporation on mesoscopic length and time scales, we report the dissipative particle dynamics (DPD) simulation results for systems with and without electrolytes. A polarizable DPD model of water is employed for accurate modeling of long-range electrostatics near the water-lipid interfaces. A great deal of discussion on field induced change in dipole moments of water and lipids together with the special variation of electric field is made in order to understand the dielectrophoretic movement of water, initiating a pore formation via an intrusion through the bilayer core. The presence of salt alters the dipolar arrangement of lipids and water, and thereby it reduces the external field required to create a pore in the membrane. The species fluxes through the pore, distributions for bead density, electrostatic potential, stresses across the membrane, etc. are used to answer some of the key questions pertaining to mechanism of electroporation. The findings are compared with the molecular dynamics simulation results found in the literature, and the comparison successfully establishes an electrostatics paradigm for biomembrane studies using DPD simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.9b00573 | DOI Listing |
Biomimetics (Basel)
December 2024
Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany.
Cardiovascular diseases such as myocardial infarction or limb ischemia are characterized by regression of blood vessels. Local delivery of growth factors (GFs) involved in angiogenesis such as fibroblast blast growth factor-2 (FGF-2) has been shown to trigger collateral neovasculature and might lead to a therapeutic strategy. In vivo, heparin, a sulfated polysaccharide present in abundance in the extracellular matrix (ECM), has been shown to function as a local reservoir for FGF-2 by binding FGF-2 and other morphogens and it plays a role in the evolution of GF gradients.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea. Electronic address:
Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability.
View Article and Find Full Text PDFRes Sq
November 2024
Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
A long-unrealized goal in solid-state nanopore sensing is to achieve out-of-plane electrical sensing and control of DNA during translocation, which is a prerequisite for base-by-base ratcheting that enables DNA sequencing in biological nanopores. Two-dimensional (2D) heterostructures, with their capability to construct out-of-plane electronics with atomic layer precision, are ideal yet unexplored candidates for use as electrical sensing membranes. Here we demonstrate a nanopore architecture using a vertical 2D heterojunction diode consisting of p-type WSe on n-type MoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!