Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nitrogen (N) fertilizer required to supply a bioenergy industry with sufficient feedstocks is associated with adverse environmental impacts, including loss of oxidized reactive nitrogen through leaching and the production of the greenhouse gas nitrous oxide (N O). We examined effects on crop yield, N fate and the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to conventional fertilizer application or intercropping with N-fixing alfalfa, for N delivery to switchgrass (Panicum virgatum), a potential bioenergy crop. Replicated field plots in Prosser, WA, were sampled over two seasons for reactive nitrogen, N O gas emissions, and bacterial and archaeal ammonia monooxygenase gene (amoA) counts. Intercropping with alfalfa (70:30, switchgrass:alfalfa) resulted in reduced dry matter yields compared to fertilized plots, but three times lower N O fluxes (≤ 4 g N O-N ha d ) than fertilized plots (12.5 g N O-N ha d ). In the fertilized switchgrass plots, AOA abundance was greater than AOB abundance, but only AOB abundance was positively correlated with N O emissions, implicating AOB as the major producer of N O emissions. A life cycle analysis of N O emissions suggested the greenhouse gas emissions from cellulosic ethanol produced from switchgrass intercropped with alfalfa cultivation would be 94% lower than emissions from equivalent gasoline usage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!