Microbial production of fuels and chemicals from lignocellulosic biomass provides a promising alternative to conventional petroleum-derived routes. However, the heterogeneous sugar composition of lignocellulose prevents efficient microbial sugar co-fermentation due to carbon catabolite repression, which negatively affects production metrics. We previously discovered that a mutant copy of the transcriptional regulator XylR (P363S and R121C; denoted as XylR*) in Escherichia coli has a higher DNA-binding affinity than wild-type XylR, leading to a stronger activation of the d-xylose catabolic genes and a release from glucose-induced repression on xylose fermentation. Here, we showed that XylR* also releases l-arabinose-induced repression on xylose fermentation through altered transcriptional control, enhancing co-fermentation of arabinose-xylose sugar mixtures in wild-type E. coli. Integrating xylR* into an ethanologenic E. coli resulted in the coutilization of 96% of the provided glucose-xylose-arabinose mixtures (120 g/L total sugars supplied) with an ethanol yield higher than 90% of the theoretical maximum by simple batch fermentations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.27144 | DOI Listing |
Environ Res
November 2024
Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China. Electronic address:
J Agric Food Chem
December 2024
Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China.
D-Ribose plays fundamental roles in all living organisms and has been applied in food, cosmetics, health care, and pharmaceutical sectors. At present, D-ribose is predominantly produced by microbial fermentation based on the pentose phosphate pathway (PPP). However, this method suffers from a long synthetic pathway, severe growth defect of the host cell, and carbon catabolite repression (CCR).
View Article and Find Full Text PDFMetab Eng
January 2025
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Inducible transcription systems are essential tools in genetic engineering, where tight control, strong inducibility and fast response with cost-effective inducers are highly desired. However, existing systems in yeasts are rarely used in large-scale fermentations due to either cost-prohibitive inducers or incompatible performance. Here, we developed powerful xylose and arabinose induction systems in Saccharomyces cerevisiae, utilizing eukaryotic activators XlnR and AraR from Aspergillus species and bacterial repressors XylR and AraR.
View Article and Find Full Text PDFMicrob Cell Fact
November 2024
State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
Background: Acetate is an important chemical feedstock widely applied in the food, chemical and textile industries. It is now mainly produced from petrochemical materials through chemical processes. Conversion of lignocellulose biomass to acetate by biotechnological pathways is both environmentally beneficial and cost-effective.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Inducible expression systems are pivotal for governing gene expression in strain engineering and synthetic biotechnological applications. Therefore, a critical need persists for the development of versatile and efficient inducible expression mechanisms. In this study, the xylose-responsive promoter xylA5p and its transcriptional regulator XylR were identified in Parageobacillus thermoglucosidasius DSM 2542.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!