The microbial transformation of androst-4-ene-3,17-dione (4-AD; ) by three fungal species, involved , and , has been studied. The latter two fungi were studied for the first time on biotransformation of 4-AD. The main product obtained by was 17α-oxa-D-homo-androst-1,4-diene-3,17-dione (testolactone; IV), which can be used as an anticancer agent. The main derivative yielded by was 11α-hydroxyandrost-4-ene-3,17-dione (11α-OH-4-AD; ), which was an important intermediate to produce Eplerenone. Meanwhile, the microbial transformation of 4-AD by produced three derivatives. Possible metabolic pathway of 4-AD via was proposed. Furthermore, the optimization for the production of 11α-OH-4-AD was carried out and the conversion rate reached to 84.0%. In this process, the dextrin and corn flour showed significant effects by response surface analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2019.1636238DOI Listing

Publication Analysis

Top Keywords

three fungal
8
fungal species
8
microbial transformation
8
biotransformation androst-4-ene-317-dione
4
androst-4-ene-317-dione three
4
species microbial
4
transformation androst-4-ene-317-dione
4
4-ad
4
androst-4-ene-317-dione 4-ad
4
4-ad three
4

Similar Publications

Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice.

Aging Cell

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice.

View Article and Find Full Text PDF

Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.

View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.

View Article and Find Full Text PDF

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!