By using monosubstituted 2,2'-bipyridine asymmetric ancillary ligands with different electron donor moieties and an arene ligand (-cymene), we successfully designed and synthesized six Ru(II) compounds () that belong to a piano-stool-type system. The NLO properties of the synthesized complexes have been studied in both solution and the solid state. The electronic spectra of these compounds show a broad feature with two absorption bands in the visible window (350-650 nm). complexes exhibit NIR emission spectra in the solution state (at >720 nm), the maxima of which are bathochromically shifted in comparison to those of the concerned ligands. Interestingly, compounds show NIR emission in their solid state too. Title compounds have lifetimes in the range of 0.2 to 0.9 ns. An important feature of this work is the π-association of the -cymene ligand to Ru(II) in the synthesized complexes; the π complex is formed by breaking the symmetry of -cymene, found in the starting precursor (Ru dimer). This has been established by NMR spectral studies along with DFT calculations on the H NMR spectra. We could derive the molecular structure of the cationic part of this system by density functional theory (DFT), associated with H NMR spectral studies. The minimum energy structures for and have been optimized at DFT/B3LYP along with the LANL2DZ basis set for ruthenium atoms. These optimized structures are further considered to calculate the excited state properties using the TDDFT method. The electrochemical studies of the complexes, investigated in acetonitrile solution, show that this system is associated with a well-defined Ru(III)/Ru(II) reversible couple, rarely observed for a Ru(II) piano-stool-type compound, along with a feature of irreversible ligand oxidation. The absorption cross-section values, obtained from the two-photon absorption studies of title compounds , are worth reporting and lie in the range of 3-28 GM (in the femtosecond case).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b01235DOI Listing

Publication Analysis

Top Keywords

nlo properties
8
synthesized complexes
8
solid state
8
nir emission
8
title compounds
8
nmr spectral
8
spectral studies
8
complexes
5
compounds
5
mononuclear ruii
4

Similar Publications

A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.

Nanomaterials (Basel)

January 2025

Key Laboratory of Organic Integrated Circuit, Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

The exploitation of high-performance third-order nonlinear optical (NLO) materials that have a favorable optical limit (OL) threshold is essential due to a rise in the application of ultra-intense lasers. In this study, a Cu-based MOF (denoted as Cu-bpy) was synthesized, and its third-order NLO and OL properties were investigated using the Z-scan technique with the nanosecond laser pulse excitation set at 532 nm. The Cu-bpy exhibits a typical rate of reverse saturable absorption (RSA) with a third-order nonlinear absorption coefficient of 100 cm GW and a favorable OL threshold of 0.

View Article and Find Full Text PDF

Carbamate-Functionalized NLOphores via a Formal [2+2] Cycloaddition-Retroelectrocyclization Strategy.

Chemistry

January 2025

Middle East Technical University: Orta Dogu Teknik Universitesi, Chemistry, Universiteler Mah., 06800, Cankaya, TURKEY.

This study introduces a new donor group capable of activating click-type [2+2] cycloaddition-retroelectrocyclizations, generally known for their limited scope. Target chromophores were synthesized using isocyanate-free urethane synthesis. The developed synthetic method allows for the tuning of the optical properties of the chromophores by modifying the donor groups, the acceptor units, and the side chains.

View Article and Find Full Text PDF

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.

View Article and Find Full Text PDF

Can Low Structural Anisotropy Produce High Optical Anisotropy? Anomalous Giant Optical Birefringent Effect in PIAlI in Focus.

J Am Chem Soc

January 2025

Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!