Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental contamination is a major global challenge, and the effects of contamination are found in most habitats. In recent times, the pollution by microplastics has come to the global attention and their removal displays an extraordinary challenge with no reasonable solutions presented so far. One of the new technologies holding many promises for environmental remediation on the microscale are self-propelled micromotors. They present several properties that are of academic and technical interest, such as the ability to overcome the diffusion limitation in catalytic processes, as well as their phoretic interaction with their environment. Here, we present two novel strategies for the elimination of microplastics using photocatalytic Au@Ni@TiO-based micromotors. We show that individual catalytic particles as well as assembled chains show excellent collection and removal of suspended matter and microplastics from environmental water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b06128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!