In the last decades, significant efforts have been made to investigate possible cytotoxic effects of metallic nanoparticles (NPs). Methodologies enabling precise information regarding uptake and intracellular distribution of NPs at the single cell level remain to be established. Mass cytometry (MC) has been developed for high-dimensional single cell analyses and is a promising tool to quantify NP-cell interactions. Here, we aim to establish a new MC-based quantification procedure to receive absolute numbers of NPs per single cell by using a calibration that considers the specific transmission efficiency (TE) of suspended NPs. The current MC-quantification strategy accept TE values of complementary metal solutions. In this study, we demonstrate the different transmission behavior of 50 nm silver NPs (AgNP) and silver nitrate solution. We have used identical AgNPs for calibration as for -differentiated macrophages (THP-1 cell line) in a time- and dose-dependent manner. Our quantification relies on silver intensities measuring AgNPs in the same detection mode as the cells. Results were comparable with the TE quantification strategy using AgNPs but differed when using ionic silver. Furthermore, intact and digested cell aliquots were measured to investigate the impact of MC sample processing on the amount of AgNPs/cell. Taken together, we have provided a MC-specific calibration procedure to precisely calculate absolute numbers of NPs per single cell. Combined with its unique feature of multiplexing up to 50 parameters, MC provides much more information on the single cell level than single cell-inductively coupled plasma mass spectrometry (SC-ICPMS) and, therefore, offers new opportunities in nanotoxicology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b01870DOI Listing

Publication Analysis

Top Keywords

single cell
24
cell level
12
nps single
12
mass cytometry
8
cell
8
absolute numbers
8
numbers nps
8
single
7
nps
6
silver
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!