SQSTM1/p62 is involved in docosahexaenoic acid-induced cellular autophagy in glioblastoma cell lines.

In Vitro Cell Dev Biol Anim

Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China.

Published: October 2019

Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the human brain and works as an anticancer agent to induce cell cycle arrest and apoptosis in glioblastoma multiforme (GBM) cell lines. However, little is known about the connection between DHA and autophagy in GBM cells. We found that high-dose DHA caused cellular autophagy in cultured U251 and U118 GBM cell lines, but there was no effect with a low dose. Moreover, after treatment with a high dose of DHA at 12, 24, and 48 h, the protein expression of SQSTM1/p62 decreased in DHA-treated U251 cells at 12 and 24 h, but increased at 48 h, while in DHA-treated U118 cells, the protein expression increased at all time points. Interestingly, the level of SQSTM1/p62 mRNA was elevated in both DHA-treated U251 and U118 cells at all time points, indicating that DHA activated SQSTM1/p62 transcription in both cell lines. Furthermore, downregulation of SQSTM1/p62 by siRNA attenuated DHA-induced cellular autophagy in both cell lines. This report confirms that high-dose DHA induces cellular autophagy in GBM cells, and demonstrates that SQSTM1/p62 acts as a regulator and participates in DHA-induced autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-019-00387-8DOI Listing

Publication Analysis

Top Keywords

cell lines
20
cellular autophagy
16
gbm cell
8
autophagy gbm
8
gbm cells
8
high-dose dha
8
u251 u118
8
protein expression
8
dha-treated u251
8
u118 cells
8

Similar Publications

Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.

Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations.

Clin Epigenetics

December 2024

Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!