Gene isolation and structural characterization of a legume tree defensin with a broad spectrum of antimicrobial activity.

Planta

Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, 11800, Montevideo, Uruguay.

Published: November 2019

The recombinant EcgDf1 defensin has an antimicrobial effect against both plant and human pathogens. In silico analyses predict that EcgDf1 is prone to form dimers capable of interacting with the membranes of microorganisms. Plant defensins comprise a large family of antimicrobial peptides (AMP) with a wide range of biological functions. They are cysteine-rich molecules, highly sequence diverse but with a conserved and stable structure. In this work, a defensin gene (EcgDf1) was isolated from Erythrina crista-galli, a legume tree native from South America. The predicted peptide presents eight cysteines, with a γ-core motif GXCX3-9C and six cysteines distributed like the typical defensin αβ motif. The mature EcgDf1 coding sequence was heterologously expressed in Escherichia coli strains and purified by affinity chromatography. Possible dimer and oligomers of EcgDf1 were visible in SDS electrophoresis. Moreover, its 3D structure, determined by homology modeling, docking, and molecular dynamics simulations, was found to be compatible with the formation of homodimers between the β3 and β1-loop-α1, leaving the β2-loop-β3 free to interact with lipid membranes. The purified recombinant peptide inhibited the growth of several critical plant and human pathogens, like the opportunistic fungi Candida albicans and Aspergillus niger and the plant pathogens Clavibacter michiganensis ssp. michiganensis, Penicillium expansum, Botrytis cinerea, and Alternaria alternata. EcgDf1 is a promising candidate for the development of antimicrobial products for use in agriculture and medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-019-03260-wDOI Listing

Publication Analysis

Top Keywords

legume tree
8
plant human
8
human pathogens
8
ecgdf1
6
gene isolation
4
isolation structural
4
structural characterization
4
characterization legume
4
defensin
4
tree defensin
4

Similar Publications

Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.

View Article and Find Full Text PDF

Medicago2035: Genomes, Functional Genomics and Molecular Breeding.

Mol Plant

December 2024

College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.

View Article and Find Full Text PDF

Background: Native to the Amazon region, Copaifera multijuga Hayne is a large tree (≈ 36 m in height) that is heavily exploited for extraction of its oleoresin. Many studies have addressed the phytochemical properties and applications of this raw material; however, there are few initiatives that have focused on the genetic characterization of native populations of this species. To this end, our objective was to develop microsatellite markers for C.

View Article and Find Full Text PDF

Mimosa tenuiflora, popularly known as "Jurema-Preta", is a perennial tree or shrub native to the tropical regions of the Americas, particularly among Afro-Brazilian and Indigenous Brazilian communities. Known for producing N,N-Dimethyltryptamine, a psychedelic compound with profound psychological effects, Jurema-Preta has been studied for its therapeutic potential in mental health. This study offers a comprehensive analysis of the plastid (ptDNA) and mitochondrion (mtDNA) genomes of M.

View Article and Find Full Text PDF

Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa).

Sci Rep

December 2024

Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.

The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!