In this study, the responses of soil bacterial communities to biochar amendment in different soils were investigated. Biochar amendment had not significantly changed the bacterial richness and diversity in black soil, fluvo-aquic soil and red soil, but shifted all the soil bacterial community structures. Biochar amendment mainly increased the growth of low-abundance bacteria in fluvo-aquic soil and that of high-abundance bacteria in red soil. The most abundant bacterial phylum in black soil and fluvo-aquic soil, Proteobacteria, increased after biochar addition, while Chloroflexi, the most abundant phylum in red soil, decreased after biochar addition. Some bacterial phyla responded consistently to biochar amendment. However, many more bacterial phyla responded differently to biochar amendment in different soils, especially those phyla present at low abundances. Therefore, our study confirmed that the responses of soil bacterial communities to the same biochar were specific to both soil type and bacterial phylum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-019-02687-x | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:
Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFSci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!