Plant-parasitic nematodes constrain chickpea () production, with annual yield losses estimated to be 14% of total global production. Nematode species causing significant economic damage in chickpea include root-knot nematodes (, , and ), cyst nematode (, and root-lesion nematode (). Reduced functionality of roots from nematode infestation leads to water stress and nutrient deficiency, which in turn lead to poor plant growth and reduced yield. Integration of resistant crops with appropriate agronomic practices is recognized as the safest and most practical, economic and effective control strategy for plant-parasitic nematodes. However, breeding for resistance to plant-parasitic nematodes has numerous challenges that originate from the narrow genetic diversity of the cultigen. While levels of resistance to , and have been identified in wild species that are superior to resistance levels in the cultigen, barriers to interspecific hybridization restrict the use of these crop wild relatives, as sources of nematode resistance. Wild species of the primary genepool, and , are the only species that have been used to introgress resistance genes into the cultigen. The availability of genomic resources, including genome sequence and re-sequence information, the chickpea reference set and mini-core collections, and new wild collections, provide unprecedented opportunities for chickpea improvement. This review surveys progress in the identification of novel genetic sources of nematode resistance in international germplasm collections and recommends genome-assisted breeding strategies to accelerate introgression of nematode resistance into elite chickpea cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689962 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00966 | DOI Listing |
Sci Rep
January 2025
Laboratory of Nematology, Department of Plant Pathology, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
Meloidogyne incognita, a highly destructive plant-parasitic nematode, poses a significant threat to crop production. The reliance on chemical nematicides for nematode control has been crucial; however, the banning of many effective nematicides due to their adverse effects has necessitated the exploration of alternative solutions. Rhizosphere biocontrol bacteria, particularly strains of Bacillus, have demonstrated promising results in managing plant-parasitic nematodes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
London Research and Development Centre, Agriculture and Agri-Food Canada, Vineland Station, ON L0R 2E0, Canada.
Agricultural soil environments contain different types of nematodes in all trophic levels that aid in balancing the soil food web. Beneficial free-living nematodes (FLNs) consist of bacterivores, fungivores, predators, and omnivores that help in the mineralization of the soil and the top-down control of harmful plant-parasitic nematodes (PPNs). Annually, USD 125 billion in worldwide crop losses are caused by PPNs, making them a plant pathogen of great concern for growers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M.
View Article and Find Full Text PDFPlant Dis
December 2024
Northwest A&F University, College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China;
Cereal cyst nematodes spp., are important pathogens of wheat (Toumi et al. 2018).
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Plant Protection, Faculty of Agriculture, Afagh Higher Education Institute, Urmia 5756151818, Iran.
In this survey, 14 populations of were collected from the rhizosphere of eight fruit and nut trees in Fars province, Southern Iran. The phylogenetic relationships of these populations with other representatives of the species were investigated using sequences of cytochrome c oxidase subunit 1 mitochondrial gene () and D2-D3 expansion fragments of 28S rDNA. Phylogenetic studies indicated a close relationship of the currently sequenced populations with known haplotype groups (HG) in the tree and revealed two separate lineages in the 28S rDNA tree.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!