Connecting neural circuit output to behaviour can be facilitated by the precise chemical manipulation of specific cell populations. Engineered receptors exclusively activated by designer small molecules enable manipulation of specific neural pathways. However, their application to studies of behaviour has thus far been hampered by a trade-off between the low temporal resolution of systemic injection versus the invasiveness of implanted cannulae or infusion pumps. Here, we developed a remotely controlled chemomagnetic modulation-a nanomaterials-based technique that permits the pharmacological interrogation of targeted neural populations in freely moving subjects. The heat dissipated by magnetic nanoparticles (MNPs) in the presence of alternating magnetic fields (AMFs) triggers small-molecule release from thermally sensitive lipid vesicles with a 20 s latency. Coupled with the chemogenetic activation of engineered receptors, this technique permits the control of specific neurons with temporal and spatial precision. The delivery of chemomagnetic particles to the ventral tegmental area (VTA) allows the remote modulation of motivated behaviour in mice. Furthermore, this chemomagnetic approach activates endogenous circuits by enabling the regulated release of receptor ligands. Applied to an endogenous dopamine receptor D1 (DRD1) agonist in the nucleus accumbens (NAc), a brain area involved in mediating social interactions, chemomagnetic modulation increases sociability in mice. By offering a temporally precise control of specified ligand-receptor interactions in neurons, this approach may facilitate molecular neuroscience studies in behaving organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778020 | PMC |
http://dx.doi.org/10.1038/s41565-019-0521-z | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
X-ray crystallography is one of the leading tools to analyze the 3-D structure, and therefore, function of proteins and other biological macromolecules. Traditional methods of mounting individual crystals for X-ray diffraction analysis can be tedious and result in damage to fragile protein crystals. Furthermore, the advent of multi-crystal and serial crystallography methods explicitly require the mounting of larger numbers of crystals.
View Article and Find Full Text PDFACS Nano
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea.
In modern digital systems, sequential logic circuits store and process information over time, whereas combinational logic circuits process only the current inputs. Conventional sequential systems, however, are complex and energy-inefficient due to the separation of volatile and nonvolatile memory components. This study proposes a compact, nonvolatile, and reconfigurable van der Waals (vdW) ferroelectric field-effect transistor (FeFET)-based sequential logic-in-memory (S-LiM) unit that performs sequential logic operations in two nonvolatile states.
View Article and Find Full Text PDFCureus
December 2024
Psychology, University of Bath, Bath, GBR.
Scand J Gastroenterol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Background: Cholecystectomy often disrupts autonomic balance, impacting recovery. Remote ischemic preconditioning (RIPC) may enhance ANS function and protect organs, but its role in cholecystectomy is unclear.
Methods: In this randomized controlled trial, 80 patients aged 45 to 65 years, scheduled for elective laparoscopic cholecystectomy, were randomly assigned to either the RIPC group or the control group.
Nutrition
November 2024
Exercise and Health Laboratory, Centro de Investigación Periodística, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!