While density functional theory (DFT) is often an accurate and efficient methodology for evaluating molecular properties such as energies and multipole moments, this approach often yields larger errors for response properties such as the dipole polarizability (α), which describes the tendency of a molecule to form an induced dipole moment in the presence of an electric field. In this work, we provide static α tensors (and other molecular properties such as total energy components, dipole and quadrupole moments, etc.) computed using quantum chemical (QC) and DFT methodologies for all 7,211 molecules in the QM7b database. We also provide the same quantities for the 52 molecules in the AlphaML showcase database, which includes the DNA/RNA nucleobases, uncharged amino acids, several open-chain and cyclic carbohydrates, five popular pharmaceutical molecules, and 23 isomers of CH. All QC calculations were performed using linear-response coupled-cluster theory including single and double excitations (LR-CCSD), a sophisticated approach for electron correlation, and the d-aug-cc-pVDZ basis set to mitigate basis set incompleteness error. DFT calculations employed the B3LYP and SCAN0 hybrid functionals, in conjunction with d-aug-cc-pVDZ (B3LYP and SCAN0) and d-aug-cc-pVTZ (B3LYP).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700155PMC
http://dx.doi.org/10.1038/s41597-019-0157-8DOI Listing

Publication Analysis

Top Keywords

alphaml showcase
8
molecular properties
8
basis set
8
b3lyp scan0
8
quantum mechanical
4
mechanical static
4
dipole
4
static dipole
4
dipole polarizabilities
4
polarizabilities qm7b
4

Similar Publications

While density functional theory (DFT) is often an accurate and efficient methodology for evaluating molecular properties such as energies and multipole moments, this approach often yields larger errors for response properties such as the dipole polarizability (α), which describes the tendency of a molecule to form an induced dipole moment in the presence of an electric field. In this work, we provide static α tensors (and other molecular properties such as total energy components, dipole and quadrupole moments, etc.) computed using quantum chemical (QC) and DFT methodologies for all 7,211 molecules in the QM7b database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!