Alternative Lengthening of Telomeres in the Budding Yeast .

G3 (Bethesda)

Department of Biology, Genetics group, Lund University, 223 62 Lund, Sweden.

Published: October 2019

The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast () has a proficient telomerase activity, we demonstrate here that telomeres in are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778800PMC
http://dx.doi.org/10.1534/g3.119.400428DOI Listing

Publication Analysis

Top Keywords

telomeric sequence
12
alternative lengthening
8
lengthening telomeres
8
budding yeast
8
linear chromosomes
8
alt mechanism
8
telomeres elongated
8
telko element
8
telomeres
6
telomerase
5

Similar Publications

Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.

View Article and Find Full Text PDF

Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness.

Nat Genet

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.

Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Solitary median maxillary central incisor (SMMCI) syndrome, the mildest form of the holoprosencephaly spectrum, is a rare anomaly characterized by the presence of a single midline central incisor in both the deciduous and permanent dentitions. Affected individuals can present with additional midline defects beyond dental findings. The 22q11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!