An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility.

Carbohydr Polym

College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, Hunan Province 411105, China; Key Laboratory of Theoretical Organic Chemistry, Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation, Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China. Electronic address:

Published: November 2019

In this work, a novel strategy for the construction of injectable self-healing nanocomposite (NC) hydrogels dominated by reversible boronic ester bonds was demonstrated. Specifically, NC hydrogels were constructed by the solution-mixing of N,N-dimethylacrylamide-stat-3-acrylamidophenylboronicacid statistical copolymers (PDMA-stat-PAPBA) and poly(glycerolmonomethacrylate) (PGMA) chains grafted cellulose nanocrystals (CNC-g-PGMA). Rheology analysis indicated the as-constructed NC hydrogel displayed about 7-fold increase in the storage modulus with a low CNCs loading level of 1.43 wt% in comparison with PGMA/PDMA-stat-PAPBA hydrogel without CNCs. Furthermore, the mechanical strength of the CNC-g-PGMA/PDMA-stat-PAPBA hydrogel was far superior to that of its PGMA/PDMA-stat-PAPBA/CNCs hydrogel counterpart, in which PGMA chains were not covalently grafted on the surfaces of CNCs. Due to reversible boronic ester bonds cross-linking networks, CNC-g-PGMA/PDMA-stat-PAPBA NC hydrogel exhibited excellent self-healing and injectable properties as well as pH/glucose responsive sol-gel transitions. Good biocompatibility was also demonstrated through in vitro cytotoxicity tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115084DOI Listing

Publication Analysis

Top Keywords

injectable self-healing
8
mechanical strength
8
good biocompatibility
8
reversible boronic
8
boronic ester
8
ester bonds
8
pgma chains
8
cnc-g-pgma/pdma-stat-papba hydrogel
8
hydrogel
5
self-healing hydrogel-cellulose
4

Similar Publications

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Gallic acid-grafted chitosan photothermal hydrogels functionalized with mineralized copper-sericin nanoparticles for MRSA-infected wound management.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China. Electronic address:

The management of wounds infected with drug-resistant bacteria represents a significant challenge to public health globally. Nanotechnology-functionalized photothermal hydrogel with good thermal stability, biocompatibility and tissue adhesion exhibits great potential in treating these infected wounds. Herein, a novel photothermal hydrogel (mCS-Cu-Ser) was prepared through in situ mineralization in the hydrogel networks and ion cross-linking driven by copper ions (∼3 mM).

View Article and Find Full Text PDF

The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.

View Article and Find Full Text PDF

A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions.

Adv Sci (Weinh)

January 2025

Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong, 510630, China.

Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment.

View Article and Find Full Text PDF

Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration.

Macromol Biosci

January 2025

Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China.

Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!