Background: Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic β-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of β-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of β-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic β-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1β), were selected as candidates to be analyzed under lipotoxic conditions.

Results: We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1β and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1β mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus.

Conclusions: In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR-Akt and IRS-1 signaling in β-cells under lipotoxic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699284PMC
http://dx.doi.org/10.1186/s40659-019-0253-4DOI Listing

Publication Analysis

Top Keywords

pancreatic β-cells
12
ffar1
9
free fatty
8
β-cell function
8
lipotoxic conditions
8
irs-1
6
palmitic acid-induced
4
acid-induced lipotoxicity
4
lipotoxicity promotes
4
promotes novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!