Perovskite-Betavoltaic Cells: A Novel Application of Organic-Inorganic Hybrid Halide Perovskites.

ACS Appl Mater Interfaces

Institute of Materials, China Academy of Engineering Physics , Jiangyou 621908 , China.

Published: September 2019

Betavoltaic devices are very appealing to applications in out-space exploration, deep-sea facilities, and implantable medical devices for their ultralong lifetime and high power density. The key to further improve the betavoltaic device efficiency is to find proper semiconductor materials with long carrier diffusion lengths and having strong interactions with β-particles. Halide perovskite would be a promising candidate material for betavoltaics due to the long carrier diffusion length, the high defect tolerance, the strong interaction with β-particles, and the wide adjustable band gap. Until now, little research has been done on perovskite-betavoltaic devices. In this work, we demonstrated a prototype perovskite-betavoltaic cell with a power conversion efficiency of 3.56% and a maximum output power of 534 nW, under electron radiation equivalent to a 10 keV and 253 mCi source mimicked by an electron gun. The device efficiency can be further improved via the device structure optimization and advanced device fabrication technique. Excellent power conversion efficiencies of 21.0 and 19.6% can be achieved for the Ni and H perovskite-betavoltaic devices based on results of the Geant4 simulation, respectively. These results indicate the brilliant prospects of perovskite materials in betavoltaic power sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b09952DOI Listing

Publication Analysis

Top Keywords

device efficiency
8
long carrier
8
carrier diffusion
8
perovskite-betavoltaic devices
8
power conversion
8
power
5
perovskite-betavoltaic
4
perovskite-betavoltaic cells
4
cells novel
4
novel application
4

Similar Publications

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.

View Article and Find Full Text PDF

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!