Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration.

Sensors (Basel)

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Published: August 2019

Robust and centimeter-level Real-time Kinematic (RTK)-based Global Navigation Satellite System (GNSS) positioning is of paramount importance for emerging GNSS applications, such as drones and automobile systems. However, the performance of conventional single-rover RTK degrades greatly in urban environments due to signal blockage and strong multipath. The increasing use of multiple-antenna/rover configurations for attitude determination in the above precise positioning applications, just as well, allows more information involved to improve RTK positioning performance in urban areas. This paper proposes a dual-antenna constraint RTK algorithm, which combines GNSS measurements of both antennas by making use of the geometric constraint between them. By doing this, the reception diversity between two antennas can be taken advantage of to improve the availability and geometric distribution of GNSS satellites, and what is more, the redundant measurements from a second antenna help to weaken the multipath effect on the first antenna. Particularly, an Ambiguity Dilution of Precision (ADOP)-based analysis is carried out to explore the intrinsic model strength for ambiguity resolution (AR) with different kinds of constraints. Based on the results, a Dual-Antenna with baseline VEctor Constraint algorithm (RTK) is developed. The primary advantages of the reported method include: 1) Improved availability and success rate of RTK, even if neither of the two single-antenna receivers can successfully solve the AR problem; and 2) reduced computational burden by adopting the concept of measurement projection. Simulated and real data experiments are performed to demonstrate robustness and precision of the algorithm in GNSS-challenged environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721140PMC
http://dx.doi.org/10.3390/s19163586DOI Listing

Publication Analysis

Top Keywords

urban environments
8
rtk
5
precise robust
4
robust rtk-gnss
4
positioning
4
rtk-gnss positioning
4
positioning urban
4
environments dual-antenna
4
dual-antenna configuration
4
configuration robust
4

Similar Publications

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

The increasing population density and impervious surface area have exacerbated the urban heat island effect, posing significant challenges to urban environments and sustainable development. Urban spatial morphology is crucial in mitigating the urban heat island effect. This study investigated the impact of urban spatial morphology on land surface temperature (LST) at the township scale.

View Article and Find Full Text PDF

Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.

View Article and Find Full Text PDF

Early life stage bottleneck determines rates of coral recovery following severe disturbance.

Ecology

January 2025

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.

Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.

View Article and Find Full Text PDF

Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!