The regulation of melatonin secretion in the avian pineal organ is highly complex and shows prominent interspecies differences. The aim of this study was to determine the roles of direct photoreception and the internal oscillator in the regulation of melatonin secretion in the pineal organ of the domestic turkey. The pineal organs were collected from 12-, 13- and 14-week-old female turkeys reared under a 12 L:12 D cycle with the photophase from 07.00 to 19.00, and were incubated in superfusion culture for 3-6 days. The cultures were subjected to different light conditions including 12 L:12 D cycles with photophases between 07.00 and 19.00, 13.00 and 01.00 or 01.00 and 13.00, a reversed cycle 12 D:12 L, cycles with long (16 L:8 D) and short (8 L:16 D) photophases, and continuous darkness or illumination. The pineal organs were also exposed to light pulses of variable duration during incubation in darkness or to periods of darkness during the photophase. The secretion of melatonin was determined by direct radioimmunoassay. The turkey pineal organs secreted melatonin in a well-entrained diurnal rhythm with a very high amplitude. Direct photoreception as an independently acting mechanism was able to ensure quick and precise adaptation of the melatonin secretion rhythm to changes in light-dark conditions. The pineal organs secreted melatonin in circadian rhythms during incubation in continuous darkness or illumination. The endogenous oscillator of turkey pinealocytes was able to acquire and store information about the light-dark cycle and then to generate the circadian rhythm of melatonin secretion in continuous darkness according to the stored data. The obtained data suggest that the turkey pineal gland is highly autonomous in the generation and regulation of the melatonin secretion rhythm. They also demonstrate that the turkey pineal organ in superfusion culture is a valuable model for chronobiological studies, providing a highly precise clock and calendar. This system has several features which make it an attractive alternative to other avian pineal glands for circadian studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721154 | PMC |
http://dx.doi.org/10.3390/ijms20164022 | DOI Listing |
PLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFBackground: Insulinoma is a neuroendocrine tumor, the main manifestation of which is hypoglycemia. However, the symptoms of hypoglycemia can be non-specific for a long time, especially outside provocative conditions, and quite often the tumor manifests from a life-threatening condition - hypoglycemic coma. In this regard, timely laboratory diagnosis of insulinoma and determination of its aggressive course is one of the priorities in modern researches.
View Article and Find Full Text PDFPeerJ
January 2025
Medical section, Jiang Ling County People's Hospital, Hubei, Jiangling County, Jingzhou City, China.
Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).
Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.
Front Plant Sci
January 2025
Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China.
Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!