The determination of daily concentrations of atmospheric pollen is important in the medical and biological fields. Obtaining pollen concentrations is a complex and time-consuming task for specialized personnel. The automatic location of pollen grains is a handicap due to the high complexity of the images to be processed, with polymorphic and clumped pollen grains, dust, or debris. The purpose of this study is to analyze the feasibility of implementing a reliable pollen grain detection system based on a convolutional neural network architecture, which will be used later as a critical part of an automated pollen concentration estimation system. We used a training set of 251 videos to train our system. As the videos record the process of focusing the samples, this system makes use of the 3D information presented by several focal planes. Besides, a separate set of 135 videos (containing 1234 pollen grains of 11 pollen types) was used to evaluate detection performance. The results are promising in detection (98.54% of recall and 99.75% of precision) and location accuracy (0.89 IoU as the average value). These results suggest that this technique can provide a reliable basis for the development of an automated pollen counting system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720915 | PMC |
http://dx.doi.org/10.3390/s19163583 | DOI Listing |
Plant Mol Biol
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
Ensuring species integrity and successful reproduction is pivotal for the survival of angiosperms. Members of Brassicaceae family employ a "lock and key" mechanism involving stigmatic (sRALFs) and pollen RALFs (pRALFs) binding to FERONIA, a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) receptor, to establish a prezygotic hybridization barrier. In the absence of compatible pRALFs, sRALFs bind to FERONIA, inducing a lock state for pollen tube penetration.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India.
Unlabelled: Bet v 1, the European White Birch tree pollen allergen is responsible for a number of allergic responses in humans such as rhinitis, asthma and oral allergy syndrome. The allergen belongs to pathogenesis-related (PR) class 10 protein superfamily and exists in several naturally occurring isoforms. Limited structural information on Bet v 1 isoallergens and variants prompted us to carry out their in silico structural characterization.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Pamukkale University, Denizli, Türkiye.
This study investigates the pollen morphology of 13 taxa of Turkish Gentiana using a statistical approach, contributing to their taxonomy. The aim is to elucidate the palynological characteristics of the taxa and to reveal their contributions to the systematic understanding of the genus Gentiana. The pollen grains are monad, radially symmetrical, isopolar, and tricolporate.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biological Sciences, University of Illinois at Chicago, Chicago, 60607, IL, USA.
Premise: Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis.
Methods: We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L.
PLoS Genet
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!