Enzymatically processed animal biomass derived from treated bovine hides (wet blue scraps) is herein used as building block for the synthesis of a novel biopolymer. An enzymatic hydrolysis process allows to produce water-soluble lower molecular weight proteins (Bio-A), which are then reacted with glycerol and maleic anhydride (MA) in order to obtain a new intermediate (Bio-IA). With Bio-IA in hand, co-polymerization in the presence of acrylic acid is then carried out. Hydrolysed biomass, intermediates and the final biopolymer (Bio-Ac) have been characterized by means of NMR, FTIR and GPC analysis. Bio-Ac shows good performance when used as retanning agent to produce leather. Physical and mechanical properties of the leather treated with Bio-Ac have been compared with acrylic resin retanned leather, showing similar performance. The reported protocol represents an environmental-friendly interesting alternative to traditional petrochemical based retanning agents, commonly used by the leather industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719968 | PMC |
http://dx.doi.org/10.3390/molecules24162979 | DOI Listing |
Sci Data
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.
The Japanese anchovy (Engraulis japonicus), a finfish with the largest biomass of a single species in the Yellow and East China Seas, plays an important pivotal role in converting zooplanktons into high trophic fish in the food web. As a result, the fish is regard as a key species in its habiting ecosystem. However, the lack of genomic resources hampers our understanding of its genetic diversity and differentiation, as well as the evolutionary dynamics.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany.
Cold waves crossing the Amazon rainforest are an extraordinary phenomenon likely to be affected by climate change. We here describe an extensive cold wave that occurred in June 2023 in Amazonian-Andean forests and compare environmental temperatures to experimentally measured thermal tolerances and their impact on lowland animal communities (insects and wild mammals). While we found strong reductions in activity abundance of all animal groups under the cold wave, tropical lowland animals showed thermal tolerance limits below the lowest environmental temperatures measured during the cold wave.
View Article and Find Full Text PDFEcology
January 2025
Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.
Microbiome
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
Background: While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!