Four kinds of Ca-montmorillonite with different layer charge density were used to study the effect of charge density on their hydration properties by molecular dynamics simulation and experiments. The research results of Z-density distribution of water molecules, H (hydrogen in water molecules), and Ca in the interlayer of montmorillonite show that the hydration properties of montmorillonite are closely related to its layer charge density. If the charge density is low, the water molecules in the interlayers are mainly concentrated on the sides of the central axis about -1.3 Å and 1.5 Å. As the charge density increases from 0.38 to 0.69, the water molecules are distributed -2.5 Å and 2.4 Å away from the siloxane surface (Si-O), the concentration of water molecules near the central axis decreases, and at the same time, Ca appears to gradually shift from the vicinity of the central axis to the Si-O surface on both sides in the montmorillonite layer. The simulation results of the radial distribution function (RDF) of the Ca-H, Ca-O (oxygen in water molecules), and Ca-O (the oxygen in the tetrahedron) show that the Ca and O are more tightly packed together than that of H; with the increase of the charge density, due to the fact that the negative charge sites on the Si-O surface increase, under the action of electrostatic attraction, some of the Ca are pulled towards the Si-O surface, which is more obvious when the layer charge density of the montmorillonite is higher. The results of the RDF of the O-H show that with the increase of charge density, the number of hydrogen bonds formed by O and H in the interlayers increase, and under the action of hydrogen bonding force, the water molecules near the central axis are pulled towards the two sides of Si-O surface. As a result, the arrangement of water molecules is more compact, and the structure is obvious. Correspondingly, the self-diffusion coefficient shows that the higher the layer charge density, the lower the self-diffusion coefficient of water molecules in interlayers is and the worse the hydration performance of montmorillonite. The experimental results of the experiments fit well with the above simulation results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720539PMC
http://dx.doi.org/10.3390/ijms20163997DOI Listing

Publication Analysis

Top Keywords

charge density
40
water molecules
36
layer charge
20
central axis
16
si-o surface
16
hydration properties
12
density
10
charge
10
water
9
molecules
9

Similar Publications

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!