The Eastern Arabian Sea (EAS) is affected by oil pollution, as often evidenced by the presence of tarballs along the West Coast of India (WCI). Tarball samples collected during May 2017 along the Goa coast were subject to biomarker fingerprints, and the results matched with Bombay High (BH) oil fingerprints. The present study primarily aims at identifying the potential minor spill areas using Sentinel-imagery. Interestingly, repeated occurrence of oil spills detected at two locations, perfectly matched with BH platforms. The simulated Lagrangian trajectories also depict that tarball particles have originated from those detected locations. In 2017 alone, the quantity of spilled oil was estimated to be 129,392 l. However, spills detected offshore regions of Kachchh and Mangalore were found to be caused by ships. This is the first comprehensive study, tracking the oil pollution sources in the EAS through multi-technique approach - chemical, remote sensing and numerical modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.07.015DOI Listing

Publication Analysis

Top Keywords

oil pollution
12
eastern arabian
8
arabian sea
8
multi-technique approach
8
spills detected
8
detected locations
8
oil
6
pollution eastern
4
sea invisible
4
invisible sources
4

Similar Publications

This study was conducted to evaluate the health risks related to eating crabs and periwinkles from Southern Nigerian coastal areas that are contaminated by crude oil. Periwinkles and crabs from contaminated locations were tested for Polycyclic aromatic hydrocarbon (PAH) and heavy metal (HM) levels using US-EPA standard, and the health risks to humans of eating these seafood were assessed. 20 samples of periwinkles and crabs were collected from crude oil-polluted coastal areas.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

Geographical impact on the distribution of polycyclic aromatic hydrocarbons (PAHs) in hilly terrain topsoil: A case study at Chongqing, SW, China.

J Hazard Mater

January 2025

Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).

View Article and Find Full Text PDF

Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!