Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern coast of the Persian Gulf.

Mar Pollut Bull

Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada.

Published: September 2019

We present a study of small microplastic particles (S-MPPs) in the sediments of mangrove ecosystem of Khor-e- Khoran, a Ramsar site in Iran. The spatial distribution of S-MPPs (<1 mm) in mangrove surface sediments were investigated, which provided new insights into the detection and composition of S-MPPs in the study area. S-MPPs were extracted via the air-induced overflow (AIO) extraction procedure, and then they were counted and categorized according to the particle shape, color and size. The mean number of S-MPPs at the five sampling sites ranged from 19.5 to 34.5 particles per kg dry sediment in Bandar Gelkan and Bandar Lengeh, respectively. In general, microfibres followed by fragments were the most common type of S-MPPs isolated in each site (>56% and ~35%, respectively). Sewage discharge is probably the main source of extracted fibres in almost all the sites. The observed S-MPPs were classified into two size groups (10-300 μm and 300-1000 μm). The majority of S-MPPs fell into the smallest size group which accounted for 70-97% of the total S-MPPs. Fourier transform infrared (FTIR) analysis of some subsamples showed that polyethylene (PE) was the most common recovered polymer. Some non-plastic particles were also isolated from plastic-like particles of suspected S-MPPs in the mangrove sediments using a Scanning Electron Microscope (FE-SEM). This study provided the first evidence of S-MPPs contamination in the mangroves of the Iranian coast of the Persian Gulf. Long-term studies are required to understand, monitor and prevent further microplastics pollution in the region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.06.033DOI Listing

Publication Analysis

Top Keywords

small microplastic
8
microplastic particles
8
s-mpps
8
particles s-mpps
8
s-mpps sediments
8
sediments mangrove
8
mangrove ecosystem
8
coast persian
8
persian gulf
8
particles
4

Similar Publications

Cooperation of Lactoplantibacillus plantarum and polyethylene microplastics facilitated the disappearance of tetracycline during anaerobic fermentation of whole plant maize.

J Hazard Mater

January 2025

College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China. Electronic address:

In agricultural production systems, the harm of both antibiotics and microplastics (MPs) to human health has been an important and continuously concerned issue. A small bagged silage production system was designed to investigate the effects of Lactoplantibacillus plantarum, polyethylene (PE) -MPs and their mixture on the silage fermentation and chemical composition of Tetracycline (TET) -contaminated whole plant maize. In addition, the bacterial community of silage samples was analyzed by using next generation genome sequencing technology.

View Article and Find Full Text PDF

Machine learning outperforms humans in microplastic characterization and reveals human labelling errors in FTIR data.

J Hazard Mater

December 2024

Discipline of Chemistry, The University of Newcastle, University Drive, Newcastle, New South Whales 2308, Australia; School of Chemistry, Monash University, Wellington Road, Melbourne, Victoria 3800, Australia. Electronic address:

Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data.

View Article and Find Full Text PDF

The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.

View Article and Find Full Text PDF

Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.

Integr Environ Assess Manag

January 2025

Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.

View Article and Find Full Text PDF

Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!