Subcellular metal distributions and metallothionein associations in rough-toothed dolphins (Steno bredanensis) from Southeastern Brazil.

Mar Pollut Bull

Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil. Electronic address:

Published: September 2019

AI Article Synopsis

  • Metals can accumulate in different cell compartments, affecting their availability and toxicity in marine mammals.
  • Subcellular metal distribution was analyzed in Steno bredanensis from Southeastern Brazil using ICP-MS, revealing varying levels of detoxification mechanisms for different metals.
  • This research provides new insights into how metals, especially essential ones, may protect against toxicity, highlighting the importance of assessing subcellular metal distribution for biomonitoring efforts.

Article Abstract

Metals are subject to internal subcellular compartmentalization, altering their bioavailability. Thus, subcellular metal assessments are crucial in biomonitoring efforts. Metal distribution in three subcellular fractions (insoluble - ISF, thermolabile - TLF and thermostable - TSF) were determined by ICP-MS in Steno bredanensis specimens from Southeastern Brazil. Associations between metals, metallothionein (MT) and reduced glutathione (GSH) were also investigated. Differential metal-detoxification mechanisms were observed. MT detoxification was mostly noted for As, Cd, and Pb, while Cu, Cr, Hg, Ni, Se and Ti displayed lower MT-associations. Fe, Zn and Se, on the other hand, were poorly associated to MT, and mostly present in the ISF, indicating low bioavailability. This is the first report on subcellular Sn and Ti distribution in cetaceans and the first in this species in Brazil. Potential protective roles of essential metals against toxic elements are postulated. This study indicates that important biochemical detoxification information is obtained through subcellular fraction analyses in marine mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.06.038DOI Listing

Publication Analysis

Top Keywords

subcellular metal
8
steno bredanensis
8
southeastern brazil
8
subcellular
6
metal distributions
4
distributions metallothionein
4
metallothionein associations
4
associations rough-toothed
4
rough-toothed dolphins
4
dolphins steno
4

Similar Publications

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.

View Article and Find Full Text PDF

Fast autofluorescence imaging to evaluate dynamic changes in cell metabolism.

J Biomed Opt

December 2024

Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.

Significance: Cellular metabolic dynamics can occur within milliseconds, yet there are no optimal tools to spatially and temporally capture these events. Autofluorescence imaging can provide metabolic information on the cellular level due to the intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD).

Aim: Our goal is to build and evaluate a widefield microscope optimized for rapid autofluorescence imaging of metabolic changes in cells.

View Article and Find Full Text PDF

Hijacking endogenous iron to amplify lysosomal-mitochondrial cascade damage for boosting anti-tumor immunotherapy.

Biomaterials

May 2025

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu and metal ion dysregulation (i.

View Article and Find Full Text PDF

Contraction and relaxation within the heart is controlled by the coordinated rise and fall of Ca levels within the cytosol of cardiomyocytes. This requires Ca to be moved between subcellular and extracellular compartments with each cardiac cycle, since Ca is not destroyed or broken down by the excitation-contraction and relaxation cycles. Many cardiac pathologies alter Ca homeostasis and can lead to impaired contraction, incomplete relaxation, and arrhythmias.

View Article and Find Full Text PDF

Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which astrocyte calcium plays a crucial role. Synaptically evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!